Prohibiting the loading of grinding tools via infiltration
by Bahman Azarhoushang
International Journal of Abrasive Technology (IJAT), Vol. 7, No. 3, 2016

Abstract: The produced chips in the grinding process may load the pores and cavities between the cutting grains. The loading of the grinding tool reduces the amount of the transported coolant to the contact zone and simultaneously increases the induced heath by friction in the cutting zone. Hence, increased grinding forces and temperature, surface roughness and wear of the cutting grains are the consequences of a loaded grinding tool. Infiltration of the grinding tool is one of the effective methods to reduce loading. The effects of infiltration have been studied for the first time in this research on various vitrified bonded grinding wheels with different grain materials, grit sizes, porosity and hardness. Better surface quality and longer dressing intervals are the main results of the infiltration of the grinding tools.

Online publication date: Fri, 29-Jul-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Abrasive Technology (IJAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email