Multi objective constrained optimisation of data envelopment analysis by differential evolution
by Narravula Ankaiah; Vadlamani Ravi
International Journal of Information and Decision Sciences (IJIDS), Vol. 7, No. 4, 2015

Abstract: Traditional data envelopment analysis (DEA) has serious shortcomings: 1) linear programming is run as many times as the number of decision making units (DMUs) resulting in no common set of weights for them; 2) maximising efficiency, a nonlinear optimisation problem, is approximated by a linear programming problem (LPP); 3) the efficiencies obtained by DEA are only relative. Hence, we propose multi objective DEA (MODEA) solved by differential evolution. Here, we maximise the efficiencies of all the DMUs simultaneously. We developed two variants of the MODEA using: 1) scalar optimisation; 2) Max-Min approach. The effectiveness of the proposed methods is demonstrated on eight datasets taken from literature. We also applied NSGA-II to solve the nonlinear optimisation problem in the strict multi objective sense. It was found that MODEA1, MODEA2 and NSGA-II are comparable, as evidenced by Spearman's rank correlation coefficient test. However, MODEA1, MODEA2, and NSGA-II yielded better discrimination among the DMUs compared to the traditional DEA.

Online publication date: Tue, 12-Jan-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information and Decision Sciences (IJIDS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email