Performance analysis of machine learning algorithms for automated diagnosis using a dataflow-based approach on the grid
by Frederico Valente; Augusto Silva; Carlos Manuel Azevedo Costa; José Miguel Franco Valiente; César Suárez-Ortega
International Journal of Image Mining (IJIM), Vol. 1, No. 2/3, 2015

Abstract: Machine learning and imaging analytics are major algorithmic components of the software used by medical practitioners in the diagnosis and treatment of diseases. Whether employed by computer aided diagnosis (CADx) or content-based image retrieval (CBIR) tools, the accuracy and relevance of the results to the practitioner are paramount to the success of any such application. In order to improve on the existing results researchers often find themselves in the need to explore various approaches and methodologies, often using very large datasets and multiple sources of information. Each of these trials can, by itself, be a very time-consuming operation. One tried and true strategy to speed up operations is the use of a distributed computing platform (delivering the computational load to a number of machines). This raises a set of problems which are often orthogonal to a researcher's interest such as which algorithmic implementations scale or how to distribute data and tasks on the grid. In this article, we present a framework that empowers researchers to quickly design sets of tests, schedule their execution and have them automatically allocated to a grid environment for execution. We describe the design and implementation of the solution, and present as an example an experiment concerning the classification of mammography segmentations.

Online publication date: Wed, 11-Nov-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Image Mining (IJIM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email