Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to Zhu system
by Sundarapandian Vaidyanathan; Sivaperumal Sampath; Ahmad Taher Azar
International Journal of Modelling, Identification and Control (IJMIC), Vol. 23, No. 1, 2015

Abstract: Synchronisation of chaotic systems is an important research problem in chaos theory. In this research work, a novel sliding mode control method is proposed for the global chaos synchronisation of identical chaotic systems. The general result derived using novel sliding mode control method is established using Lyapunov stability theory. As an application of the general result, the problem of global chaos synchronisation of identical Zhu chaotic systems (2010) is studied and a new sliding mode controller is derived. Numerical simulations have been shown to illustrate the phase portraits of Zhu chaotic system and the sliding mode controller design for the global chaos synchronisation of identical Zhu chaotic systems.

Online publication date: Tue, 17-Feb-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com