Rough mereology classifier vs. simple DNA microarray gene extraction methods
by Piotr Artiemjew
International Journal of Data Mining, Modelling and Management (IJDMMM), Vol. 6, No. 2, 2014

Abstract: This work extends the author's contribution to the Second International Conference of Soft Computing and Pattern Recognition (SocPar 2010) held at the University of Cergy Pontoise in December 2010. The current version is dedicated to the topic of gene separation algorithms and our best classification method based on weighted voting, which was investigated recently by Polkowski and Artiemjew. The DNA microarrays are a popular tool, useful to the research of gene expression. The exemplary application is, among others, to differentiate healthy and ill tissues, distinguishing some organisms' features or to check changes in gene expression by means of some additional factors. The huge amount of information obtained from DNA microarrays in the range of tens of thousands of genes causes many difficulties. Many algorithms, especially brute force methods, cannot be applied for this reason, and due to the low number of training objects tend to overfit. In this paper, we present two simple gene extraction methods compared by means of our best weighted voting classifier. The results of research show the high effectiveness of our approach, and full comparability with the results of the recent DNA microarray data mining competition.

Online publication date: Sun, 06-Jul-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining, Modelling and Management (IJDMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email