The full text of this article

 

Bond graph models of DC-DC converters operating for both CCM and DCM
by Antonios Markakis; William Holderbaum; Ben Potter
International Journal of Power Electronics (IJPELEC), Vol. 6, No. 1, 2014

 

Abstract: In this paper, bond graphs are employed to develop a novel mathematical model of conventional switched-mode DC-DC converters valid for both continuous and discontinuous conduction modes. A unique causality bond graph model of hybrid models is suggested with the operation of the switch and the diode to be represented by a modulated transformer with a binary input and a resistor with fixed conductance causality. The operation of the diode is controlled using an if-then function within the model. The extracted hybrid model is implemented on a boost and buck converter with their operations to change from CCM to DCM and to return to CCM. The vector fields of the models show validity in a wide operational area and comparison with the simulation of the converters using PSPICE reveals high accuracy of the proposed model, with the normalised root means square error and the maximum absolute error remaining adequately low. The model is also experimentally tested on a buck topology.

Online publication date: Sat, 26-Apr-2014

 

is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

 
Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

 
Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Power Electronics (IJPELEC):
Login with your Inderscience username and password:

 

    Username:        Password:         

Forgotten your password?


 
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

 
If you still need assistance, please email subs@inderscience.com