A CFD study of the effect of venturi geometry on high pressure wet gas metering
by Kumar Perumal; Jagannathan Krishnan
International Journal of Oil, Gas and Coal Technology (IJOGCT), Vol. 6, No. 5, 2013

Abstract: Venturi meter is increasingly being preferred as wet gas flow meter because of its simple construction and ease of operation. It has been found that the performance of venturi in single phase gas is very different from that of water. In this work, with a view to optimise the design, the effects of diameter, diameter ratio and convergent angle on the performance of a venturi meter for wet gas metering has been studied by CFD modelling of the high pressure wet gas flow. The performance of eight wet gas correlations for flow prediction has also been studied. Simulation results reveal that a convergent angle of 10.5 deg to be a better choice for wet gas metering. Homogeneous flow model, Steven's and De Leeuw's correlations are found to be better than the other correlations. While homogeneous flow model performs consistently, Steven's and De Leeuw's performance drops at 40 bar. [Received: March 27, 2012; Accepted: July 1, 2012].

Online publication date: Mon, 12-Aug-2013

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Oil, Gas and Coal Technology (IJOGCT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com