The full text of this article

 

Subtree selection in kernels for graph classification
by Mehmet Tan; Faruk Polat; Reda Alhajj
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 8, No. 3, 2013

 

Abstract: Classification of structured data is essential for a wide range of problems in bioinformatics and cheminformatics. One such problem is in silico prediction of small molecule properties such as toxicity, mutagenicity and activity. In this paper, we propose a new feature selection method for graph kernels that uses the subtrees of graphs as their feature sets. A masking procedure which boils down to feature selection is proposed for this purpose. Experiments conducted on several data sets as well as a comparison of our method with some frequent subgraph based approaches are presented.

Online publication date: Mon, 24-Jun-2013

 

is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

 
Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

 
Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

 

    Username:        Password:         

Forgotten your password?


 
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

 
If you still need assistance, please email subs@inderscience.com