The full text of this article

 

Functional MR image statistical restoration for neural activity detection using hidden Markov tree model
by Chuan Li; Qi Hao
International Journal of Computational Biology and Drug Design (IJCBDD), Vol. 6, No. 3, 2013

 

Abstract: In this paper, we present a framework for functional MR image restoration based on the Hidden Markov Tree (HMT) model. Under this scheme, the wavelet/contourlet coefficients of the distorted image are filtered using the HMT model of the baseline image to minimise the statistical divergence between two images. An iterative algorithm between image registration and HMT filtering is developed to achieve a trade-off between the least mean square error (in the spatial domain) and the minimum statistical divergence (in the spectral domain). We demonstrate that the proposed method can eliminate the motion artefacts (such as spikes and burring) in the Functional MR Imaging data more effectively, leading to reliable neural activity detection. This method can also be used for image restoration in other medical imaging applications.

Online publication date: Mon, 29-Jul-2013

 

is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

 
Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

 
Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Biology and Drug Design (IJCBDD):
Login with your Inderscience username and password:

 

    Username:        Password:         

Forgotten your password?


 
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

 
If you still need assistance, please email subs@inderscience.com