Creep behaviour of HDPE/wood particle composites
by Hassine Bouafif; Ahmed Koubaa; Patrick Perré; Alain Cloutier
International Journal of Microstructure and Materials Properties (IJMMP), Vol. 8, No. 3, 2013

Abstract: The effect of particle type, size, content and manufacturing process on the creep behaviour of wood particles/High Density Polyethylene (HDPE) composites has been investigated. Short-term creep tests at different temperatures were carried out and modelled using the Bürger's model and the Findley power law. The creep of the composites was found to increase with temperature due to the mobility of the amorphous bulk and tie HDPE molecules. Increased wood particle content generally decreased the creep level. Jack pine composites exhibited the highest creep reduction due to the chemical composition of the fibres surface and the efficiency of adhesion mechanism between fibres and the HDPE. Injection and compression processes led to better creep behaviour than the extrusion process due to differences in the composites microstructures. Particle size did not show important impacts on the creep properties. Findley power law led to better prediction of long time creep behaviour of the composites.

Online publication date:: Thu, 02-Jan-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Microstructure and Materials Properties (IJMMP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email