Multiresponse optimisation of powder metals via probabilistic loss functions
by Caglar S. Aksezer; James C. Benneyan
European J. of Industrial Engineering (EJIE), Vol. 7, No. 3, 2013

Abstract: Quadratic loss functions have been used extensively within the context of quality engineering and experimental design for process and product optimisation and robust design. In general, this approach determines optimal parameter settings based on minimising the sum of individual or mean loss of the associated response(s) of interest in a defined response surface. While the method is neat and handy, it totally neglects the effect of deviations on the desirable value of loss function. This paper utilises variance and probability distribution of loss functions for developing an in depth optimisation scheme that balances mean and variance of loss in a Pareto optimal manner. Since losses are usually defined in financial terms, this model then further improved to handle the user determined risk levels so that financial losses are being restricted within a certain region of interest. Application of the model is illustrated on a multiresponse optimisation problem from powder metallurgy industry. [Received 17 September 2009; Revised 05 August 2010; Revised 30 November 2010; Revised 14 June 2011; Accepted 10 October 2011]

Online publication date: Wed, 22-May-2013

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the European J. of Industrial Engineering (EJIE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com