The full text of this article


3D genetic algorithms for underwater sensor networks
by Jianmin Zou; Stephen Gundry; Janusz Kusyk; M. Ümit Uyar; Cem Safak Sahin
International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC), Vol. 13, No. 1, 2013


Abstract: We introduce a genetic algorithm-based topology control mechanism, named 3D-GA, for Autonomous Underwater Vehicles (AUVs) operating in Underwater Sensor Networks (UWSNs). Using limited information collected from a node's local neighbours, 3D-GA runs autonomously at each AUV and provides guidance for its speed and direction towards a uniform spatial distribution while maintaining network connectivity. Imprecise and limited neighbourhood knowledge could potentially disrupt convergence towards a uniform and stable spatial coverage. We demonstrate that AUVs running our 3D-GA create a highly resilient network that can adapt to changing conditions such as the addition, loss or malfunction of number of AUVs. We also show that the ambiguity in detecting neighbours' exact locations does not prevent 3D-GA from achieving a uniform coverage but requiring AUVs travel longer distances to stabilise. Our simulation software results verify that 3D-GA is an effective tool for providing a robust solution for volumetric spatial control of AUVs in UWSNs.

Online publication date: Sat, 11-May-2013


is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC):
Login with your Inderscience username and password:


    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email