The full text of this article

 

Railway demand forecasting in revenue management using neural networks
by Sh. Sharif Azadeh; R. Labib; G. Savard
International Journal of Revenue Management (IJRM), Vol. 7, No. 1, 2013

 

Abstract: This study analyses the use of neural networks to produce accurate forecasts of total bookings and cancellations before departure, of a major European rail operator. Effective forecasting models, can improve revenue performance of transportation companies significantly. The prediction model used in this research is an improved multi-layer perceptron (MLP) describing the relationship between number of passengers and factors affecting this quantity based on historical data. Relevant pre-processing approaches have been employed to make learning more efficient. The generalisation of the network is tested to evaluate the accuracy prediction of the regression model for future trends of reservations and cancellations using actual railroad data. The results show that it is a promising approach in railway demand forecasting with a low prediction error.

Online publication date: Wed, 17-Apr-2013

 

is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

 
Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

 
Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Revenue Management (IJRM):
Login with your Inderscience username and password:

 

    Username:        Password:         

Forgotten your password?


 
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

 
If you still need assistance, please email subs@inderscience.com