FAR-miner: a fast and efficient algorithm for fuzzy association rule mining
by Ashish Mangalampalli; Vikram Pudi
International Journal of Business Intelligence and Data Mining (IJBIDM), Vol. 7, No. 4, 2012

Abstract: Association rule mining (ARM) algorithms work only with binary attributes, and expect quantitative attributes to be converted to binary ones using sharp partitions, like 'age = [25, 60]'. A better alternative is to convert quantitative attributes to fuzzy attributes, like 'age = middle-aged', to eliminate loss of information due to sharp partitioning, and then run a fuzzy ARM algorithm. The most popular fuzzy ARM algorithms are fuzzy adaptations of apriori. Fuzzy apriori, like apriori, is a slow algorithm, especially for most medium-sized (500 K to 1 M) and large ( > 1 M) datasets. We propose a new fuzzy ARM algorithm called FAR-miner for fast and efficient performance. Through experiments we show that FAR-miner is 8-19 and 6-10 times faster on large and medium-sized datasets respectively as compared to fuzzy apriori. This efficiency is due to properties like two-phased multiple-partition tidlist-style processing and byte-vector representation and effective compression of tidlists.

Online publication date: Sun, 27-Jan-2013

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Intelligence and Data Mining (IJBIDM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com