A novel multi-stage feature selection method for microarray expression data analysis
by Wei Du; Ying Sun; Yan Wang; Zhongbo Cao; Chen Zhang; Yanchun Liang
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 7, No. 1, 2013

Abstract: With the development of genome research, finding method to classify cancer and detect biomarkers efficiently has become a challenging problem. In this paper, a novel multi-stage method for feature selection is proposed which considers all kinds of genes in the original gene set. The method eliminates the irrelevant, noisy and redundant genes and selects a subset of relevant genes at different stages. The proposed method is examined on microarray datasets of Leukemia, Prostate, Colon, Breast, Nervous and DLBCL by different classifiers and the best accuracies of the method in these datasets are 100%, 98.04%, 100%, 89.74%, 100% and 98.28%, respectively.

Online publication date: Wed, 12-Dec-2012

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com