The full text of this article

 

Sliding mode-like learning control for SISO complex systems with T-S fuzzy models
by Feisiang Tay; Zhihong Man; Zhenwei Cao; Suiyang Khoo; Chee Pin Tan
International Journal of Modelling, Identification and Control (IJMIC), Vol. 16, No. 4, 2012

 

Abstract: In this paper, a sliding mode-like learning control scheme is developed for a class of single input single output (SISO) complex systems. First, the Takagi-Sugeno (T-S) fuzzy modelling technique is employed to model the uncertain complex dynamical systems. Second, a sliding mode-like learning control is designed to drive the sliding variable to converge to the sliding surface, and the system states can then asymptotically converge to zero on the sliding surface. The advantages of this scheme are that: 1) the information about the uncertain system dynamics and the system model structure is not required for the design of the learning controller; 2) the closed-loop system behaves with a strong robustness with respect to uncertainties; 3) the control input is chattering-free. The sufficient conditions for the sliding mode-like learning control to stabilise the global fuzzy model are discussed in detail. A simulation example for the control of an inverted pendulum cart is presented to demonstrate the effectiveness of the proposed control scheme.

Online publication date: Wed, 25-Jul-2012

 

is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

 
Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

 
Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:

 

    Username:        Password:         

Forgotten your password?


 
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

 
If you still need assistance, please email subs@inderscience.com