The full text of this article


Block-based Deep Belief Networks for face recognition
by Sue Inn Ch'ng; Kah Phooi Seng; Li-Minn Ang
International Journal of Biometrics (IJBM), Vol. 4, No. 2, 2012


Abstract: This paper presents research findings on the use of Deep Belief Networks (DBNs) for face recognition. Experiments were conducted to compare the performance of a DBN trained using whole images with that of several DBN trained using image blocks. Image blocks are obtained when the face images are divided into smaller blocks. The objective of using image blocks is to improve the performance of the present DBN to visual variations. To test this hypothesis, the proposed block-based DBN was tested on different databases, which contain a variety of visual variations. Simulation results on these databases show that the proposed block-based DBN is effective against lighting variation. The proposed approach is also compared with other illumination invariant methods and was found to demonstrate higher recognition accuracies.

Online publication date: Sun, 25-Mar-2012


is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Biometrics (IJBM):
Login with your Inderscience username and password:


    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email