The full text of this article

 

Active force cancellation of a near resonance vibrating system using robust H control
by S.C. Fok; M.W.S. Lau; G.L. Seet; E. Low
International Journal of Vehicle Noise and Vibration (IJVNV), Vol. 8, No. 1, 2012

 

Abstract: In this study, the active force cancellation performance of a robust H controller is investigated on a near resonance vibrating system consisting of a rotating machine hard mounted on a flexible base. This configuration and phenomenon can be present in vehicle engine mounts. The model of the vibrating system was first identified experimentally. The uncompensated system frequency response is then used to design the controller. The control objective is to reduce the system (RMS) gain. The effectiveness of the controller has been demonstrated experimentally through implementation on a digital signal processor. Results show reductions of the measured RMS transmitted forces at different mount locations when the machine is operated at speeds near the principal mode of vibration. However at frequency where the vibration is not significant, the reduction in transmitted force level can be minimal.

Online publication date: Wed, 28-Mar-2012

 

is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

 
Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

 
Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Noise and Vibration (IJVNV):
Login with your Inderscience username and password:

 

    Username:        Password:         

Forgotten your password?


 
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

 
If you still need assistance, please email subs@inderscience.com