The full text of this article


In silico prediction of noncoding RNAs using supervised learning and feature ranking methods
by Stephen J. Griesmer; Miguel Cervantes-Cervantes; Yang Song; Jason T.L. Wang
International Journal of Bioinformatics Research and Applications (IJBRA), Vol. 7, No. 4, 2011


Abstract: We propose here a new approach for ncRNA prediction. Our approach selects features derived from RNA folding programs and ranks these features using a class separation method that measures the ability of the features to differentiate between positive and negative classes. The target feature set comprising top-ranked features is then used to construct several classifiers with different supervised learning algorithms. These classifiers are compared to the same supervised learning algorithms with the baseline feature set employed in a state-of-the-art method. Experimental results based on ncRNA families taken from the Rfam database demonstrate the good performance of the proposed approach.

Online publication date: Mon, 14-Nov-2011


is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bioinformatics Research and Applications (IJBRA):
Login with your Inderscience username and password:


    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email