The full text of this article

 

Regression analysis using the imprecise Bayesian normal model
by Lev V. Utkin
International Journal of Data Analysis Techniques and Strategies (IJDATS), Vol. 2, No. 4, 2010

 

Abstract: A class of regression models taking into account the lack of sufficient statistical data is proposed. The main ideas of the class are to use the framework of Vapnik's learning theory and to replace a single probability distribution of the noise by a set of probability distributions, which is not the parametric set of distributions. The set of probability distributions is defined by the imprecise Bayesian normal model. A numerical example illustrates the proposed regression models.

Online publication date: Tue, 14-Dec-2010

 

is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

 
Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

 
Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Analysis Techniques and Strategies (IJDATS):
Login with your Inderscience username and password:

 

    Username:        Password:         

Forgotten your password?


 
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

 
If you still need assistance, please email subs@inderscience.com