The full text of this article

 

Classes of permutation arrays in finite projective spaces
by T.L. Alderson, Keith E. Mellinger
International Journal of Information and Coding Theory (IJICOT), Vol. 1, No. 4, 2010

 

Abstract: We exhibit some techniques for constructing permutation arrays using projections in finite projective spaces and the geometry of arcs in the finite projective plane. We say a permutation array PA(n, d) has length n and minimum distance d when it consists of a collection of permutations on n symbols that pairwise agree in at most n − d coordinate positions. Such arrays can also be viewed as non-linear codes and are used in powerline communication. While our techniques likely do not produce optimal arrays, we are able to construct examples of codes for certain parameter sets for which no constructions were previously known.

Online publication date: Sun, 25-Apr-2010

 

is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

 
Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

 
Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information and Coding Theory (IJICOT):
Login with your Inderscience username and password:

 

    Username:        Password:         

Forgotten your password?


 
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

 
If you still need assistance, please email subs@inderscience.com