The full text of this article


Efficient simulation and integrated likelihood estimation in state space models
by Joshua C.C. Chan, Ivan Jeliazkov
International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO), Vol. 1, No. 1/2, 2009


Abstract: We consider the problem of implementing simple and efficient Markov chain Monte Carlo (MCMC) estimation algorithms for state space models. A conceptually transparent derivation of the posterior distribution of the states is discussed, which also leads to an efficient simulation algorithm that is modular, scalable and widely applicable. We also discuss a simple approach for evaluating the integrated likelihood, defined as the density of the data given the parameters but marginal of the state vector. We show that this high-dimensional integral can be easily evaluated with minimal computational and conceptual difficulty. Two empirical applications in macroeconomics demonstrate that the methods are versatile and computationally undemanding. In one application, involving a time-varying parameter model, we show that the methods allow for efficient handling of large state vectors. In our second application, involving a dynamic factor model, we introduce a new blocking strategy which results in improved MCMC mixing at little cost. The results demonstrate that the framework is simple, flexible and efficient.

Online publication date: Wed, 09-Dec-2009


is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO):
Login with your Inderscience username and password:


    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email