Image classification of artificial fingerprints using Gabor wavelet filters, self-organising maps and Hermite/Laguerre neural networks
by Leif E. Peterson, Kirill V. Larin
International Journal of Knowledge Engineering and Soft Data Paradigms (IJKESDP), Vol. 1, No. 3, 2009

Abstract: Image classification was performed using Gabor wavelet filters for image feature extraction, self-organising maps (SOM) for dimensional reduction of Gabor wavelet filters, and forward (FNN), Hermite (HNN) and Laguerre (LNN) neural networks to classify real and artificial fingerprint images from optical coherence tomography (OCT). Use of a SOM after Gabor edge detection of OCT images of fingerprint and material surfaces resulted in the greatest classification performance when compared with moments based on colour, texture and shape. The FNN and HNN performed similarly, however, the LNN performed the worst at a low number of hidden nodes but overtook performance of the FNN and HNN as the number of hidden nodes approached n = 10.

Online publication date: Sat, 03-Oct-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Knowledge Engineering and Soft Data Paradigms (IJKESDP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email