The full text of this article

 

Universal ternary logic circuit design through carbon nanotube technology
by Peiman Keshavarzian, Keivan Navi
International Journal of Nanotechnology (IJNT), Vol. 6, No. 10/11, 2009

 

Abstract: Multiple-valued logic circuits can reduce the number of operations necessary to implement a particular mathematical function and further have an advantage in terms of reduced area. Implementable CNTFET circuits have operational characteristics to approach the advantage of using MVL. Conventional nanotube diameters and using CNTFET characteristics has attracted considerable attention in the ternary logic family designs. In order to describe all ternary functions, we have achieved a new CNTFET circuit design in the universal form. In this design we have neither exclusive design problems nor mathematical equations to achieve the appropriate combination of the basic operations in the MVL fields.

Online publication date: Fri, 31-Jul-2009

 

is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

 
Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

 
Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

 

    Username:        Password:         

Forgotten your password?


 
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

 
If you still need assistance, please email subs@inderscience.com