The full text of this article

 

An evaluation of UK risky money: an artificial intelligence approach
by Jane M. Binner, Alicia M. Gazely, Graham Kendall
Global Business and Economics Review (GBER), Vol. 11, No. 1, 2009

 

Abstract: In this paper we compare the performance of three indices in an inflation forecasting experiment. The evidence not only suggests that an evolved neural network is superior to traditionally trained networks in the majority of cases, but also that a risky money index performs at least as well as the Bank of England Divisia index when combined with interest rate information. Notably, the provision of long-term interest rates improves the out-of-sample forecasting performance of the Bank of England Divisia index in all cases examined.

Online publication date: Wed, 20-May-2009

 

is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

 
Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

 
Complimentary Subscribers, Editors or Members of the Editorial Board of the Global Business and Economics Review (GBER):
Login with your Inderscience username and password:

 

    Username:        Password:         

Forgotten your password?


 
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

 
If you still need assistance, please email subs@inderscience.com