The full text of this article

 

The structure of electrical networks: a graph theory based analysis
by Karla Atkins, Jiangzhuo Chen, V.S. Anil Kumar, Achla Marathe
International Journal of Critical Infrastructures (IJCIS), Vol. 5, No. 3, 2009

 

Abstract: We study the vulnerability of electrical networks through structural analysis from a graph theory point of view. We measure and compare several important structural properties of different electrical networks, including a real power grid and several synthetic grids, as well as other infrastructural networks. The properties we consider include the minimum dominating set size, the degree distribution and the shortest path distribution. We also study the network vulnerability under attacks in terms of maximum component size, number of components and flow vulnerability. Our results suggest that all grids are more vulnerable to targeted attacks than to random attacks. We also observe that the electrical networks have low treewidth, which explains some of the vulnerability. We prove that with a small treewidth, a few important structural properties can be computed more efficiently.

Online publication date: Sat, 02-May-2009

 

is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

 
Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

 
Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Critical Infrastructures (IJCIS):
Login with your Inderscience username and password:

 

    Username:        Password:         

Forgotten your password?


 
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

 
If you still need assistance, please email subs@inderscience.com