Multifractal-based cluster hierarchy optimisation algorithm
by Guang-Hui Yan, Li-Song Liu, Lin-Na Du, Xia-Xia Yang, Zhi-Cheng Ma, Xiao-Min Zhang
International Journal of Business Intelligence and Data Mining (IJBIDM), Vol. 3, No. 4, 2008

Abstract: A cluster is a collection of data objects that are similar to one another within the same cluster and are dissimilar to the objects in other clusters. Moreover, there will exist more or less similarities among these large amounts of initial cluster results in a real-life data set. Accordingly, an analyser will have difficulty implementing further analysis if they know nothing about these similarities. Therefore, it is very valuable to analyse these similarities and construct the hierarchy structures of the initial clusters. The traditional cluster methods are unfit for this cluster postprocessing problem for their favour of finding the spherical shape clusters, impractical hypothesis and multiple scans of the data set. Based on multifractal theory, we propose the MultiFractal-based Cluster Hierarchy Optimisation (MFCHO) algorithm, which integrates the cluster similarity with cluster shape and cluster distribution to construct the cluster hierarchy tree from the disjoint initial clusters. The elementary time-space complexity of the MFCHO algorithm is presented. Several comparative experiments using synthetic and real-life data sets show the performance and the effectivity of MFCHO.

Online publication date: Sun, 25-Jan-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Intelligence and Data Mining (IJBIDM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email