The full text of this article

 

Extracting Protein-Protein Interactions from MEDLINE using the Hidden Vector State model
by Deyu Zhou, Yulan He, Chee Keong Kwoh
International Journal of Bioinformatics Research and Applications (IJBRA), Vol. 4, No. 1, 2008

 

Abstract: A major challenge in text mining for biomedicine is automatically extracting protein-protein interactions from the vast amount of biomedical literature. We have constructed an information extraction system based on the Hidden Vector State (HVS) model for protein-protein interactions. The HVS model can be trained using only lightly annotated data whilst simultaneously retaining sufficient ability to capture the hierarchical structure. When applied in extracting protein-protein interactions, we found that it performed better than other established statistical methods and achieved 61.5% in F-score with balanced recall and precision values. Moreover, the statistical nature of the pure data-driven HVS model makes it intrinsically robust and it can be easily adapted to other domains.

Online publication date: Sun, 17-Feb-2008

 

is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

 
Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

 
Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bioinformatics Research and Applications (IJBRA):
Login with your Inderscience username and password:

 

    Username:        Password:         

Forgotten your password?


 
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

 
If you still need assistance, please email subs@inderscience.com