The full text of this article

 

CCReSD: concept-based categorisation of Hidden Web databases
by Yih-Ling Hedley, Muhammad Younas, Anne James
International Journal of High Performance Computing and Networking (IJHPCN), Vol. 5, No. 1/2, 2007

 

Abstract: Hidden Web databases dynamically generate results in response to users' queries. The categorisation of such databases into a category scheme has been widely employed in information searches. We present a Concept-based Categorisation over Refined Sampled Documents (CCReSD) approach that effectively handles information extraction, summarisation and categorisation of such databases. CCReSD detects and extracts query-related information from sampled documents of databases. It generates terms and frequencies to summarise database contents. It also generates descriptions of concepts from their coverage and specificity given in a category scheme. We conduct experiments to evaluate our approach and to show that it assigns databases with more relevant subject categories.

Online publication date: Wed, 14-Nov-2007

 

is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

 
Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

 
Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of High Performance Computing and Networking (IJHPCN):
Login with your Inderscience username and password:

 

    Username:        Password:         

Forgotten your password?


 
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

 
If you still need assistance, please email subs@inderscience.com