The full text of this article

 

Analysis of flow-correlation attacks in anonymity network
by Ye Zhu, Xinwen Fu, Riccardo Bettati, Wei Zhao
International Journal of Security and Networks (IJSN), Vol. 2, No. 1/2, 2007

 

Abstract: Mix networks are designed to provide anonymity for users in a variety of applications, including privacy-preserving WWW browsing and numerous e-commerce systems. Such networks have been shown to be susceptible to a number of statistical traffic analysis attacks. Among these are flow correlation attacks, where an adversary may disclose the communication relationship between a sender and a receiver by measuring the similarity between the sender's outbound flow and the receiver's inbound flow. The effectiveness of the attacks is measured in terms of the probability that an adversary correctly recognises the receiver. This paper describes a model for the flow correlation attack effectiveness. Our results illustrate the quantitative relationship among system parameters such as sample size, noise level, payload flow rate and attack effectiveness. Our analysis quantitatively reveals how, under certain situations, existing flow-based anonymous systems would fail under flow-correlation attacks, thus providing useful guidelines for the design of future anonymous systems.

Online publication date: Fri, 16-Mar-2007

 

is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

 
Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

 
Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Security and Networks (IJSN):
Login with your Inderscience username and password:

 

    Username:        Password:         

Forgotten your password?


 
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

 
If you still need assistance, please email subs@inderscience.com