The full text of this article


Defect detection in thin plates by ultrasonic lamb wave techniques
by K. Edalati, A. Kermani, M. Seiedi, A. Movafeghi
International Journal of Materials and Product Technology (IJMPT), Vol. 27, No. 3/4, 2006


Abstract: In the present study, the ability of ultrasonic lamb wave testing for defect detection and sizing in a thin aluminium plate (2mm in thickness) was investigated. The numerical methods were applied for drawing the dispersion and displacement curves of lamb waves in order to adopt mode selection. Two ultrasonic lamb wave techniques, pulse-echo (a1 mode as emitter) and emission (s1 mode as emitter), were applied for interpretation of notch defects with depths of 10, 30 and 60% of plate thickness. It was observed that these techniques are sensitive enough to evaluate notch defects, especially in short probe to defect distances. Defect location and defect length were proposed to be determined in the manner similar to common ultrasonic testing methods. Also, a Distance-Amplitude-Correction (DAC) curve was proposed for defect sizing which showed that amplitude analysis can give some qualitative information about defect depth but results were not always repeatable. The pulse-echo method showed better sensitivity for defect detection and sizing.

Online publication date: Fri, 10-Nov-2006


is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Product Technology (IJMPT):
Login with your Inderscience username and password:


    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email