Fast parallel PageRank technique for detecting spam web pages
by Nilay Khare; Hema Dubey
International Journal of Data Mining, Modelling and Management (IJDMMM), Vol. 11, No. 4, 2019

Abstract: Brin and Larry proposed PageRank in 1998, which appears as a prevailing link analysis technique used by web search engines to rank its search results list. Computation of PageRank values in an efficient and faster manner for very immense web graph is truly an essential concern for search engines today. To identify the spam web pages and also deal with them is yet another important concern in web browsing. In this research article, an efficient and faster parallel PageRank algorithm is proposed, which harnesses the power of graphics processing units (GPUs). In proposed algorithm, the PageRank scores are non-uniformly distributes among the web pages, so it is also competent of coping with spam web pages. The experiments are performed on standard datasets available in Stanford large network dataset collection. There is a speed up of about 1.1 to 1.7 for proposed parallel PageRank algorithm over existing parallel PageRank algorithm.

Online publication date: Fri, 06-Sep-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining, Modelling and Management (IJDMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email