Preventing crimes ahead of time by predicting crime propensity in released prisoners using data mining techniques
by H. Benjamin Fredrick David; A. Suruliandi; S.P. Raja
International Journal of Applied Decision Sciences (IJADS), Vol. 12, No. 3, 2019

Abstract: Criminologists and psychologists around the world are finding new initiatives to identify criminals and understand crime scenes. This work focuses on predicting the occurrence of crimes for a released prisoner, based on crime propensity prediction, using a supervised machine learning technique. This original research is intended to design and develop a new dataset of 30 attributes that exists nowhere and is exclusively created to define prisoners so as to differentiate them by their propensity to crime using psychological and behavioural factors obtained from jails and assorted sources. The research incorporates an analysis of seven search methods, in tandem with seven subset evaluation techniques, to undertake feature selection, and nine classification algorithms for the classification of prisoners. It is found that the wolf search algorithm, used with the correlation-based feature subset evaluation technique and radial basis function classifier, performs best providing 97.8% precision, 97.5% recall and low error values.

Online publication date: Tue, 19-Mar-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Applied Decision Sciences (IJADS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com