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Abstract: This paper focuses on an investigation of differential functioning in 
all options of multiple-choice items, referred to as differential options 
functioning (DOF). DOF is defined as an investigation into whether 
respondents from different groups (i.e. subpopulations), with equal levels of the 
attribute being measured (i.e. skill, ability, etc.) would have different 
probabilities to select the options. This paper aims to reconceptualise previous 
approaches to DOF in terms of its terminologies, purposes and uses. This paper 
further proposes a set of simple and integrated procedures for investigating 
DOF based on the well-known theory of multinomial logistic regression. A real 
data demonstration is provided to guide the application of the proposed 
method. The demonstration compares two test-language groups (English vs. 
French) on the four options of 15 multiple-choice items in booklet 13 of the 
2011 Progress in International Reading Literacy Study. 
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1 Introduction 

Multiple-choice items require an individual to respond by selecting from a pre-specified 
set of options. This item format is widely used in achievement/aptitude tests where 
examinees are required to choose a correct answer. It is also common in 
questionnaires/surveys where respondents are asked to choose from a set of 
phrases/statements to elicit their preference, inclination or valuing. In the latter context, 
the response options can be either ordered (e.g. a Likert-type rating scale) and result in 
ordinal response data or unordered (e.g. forced-choice or ipsative format) and result in 
nominal data. With its wide popularity and utility, multiple-choice items are often subject 
to an examination of lack of measurement invariance (a potential measurement bias) due 
to differential responding (e.g. how distinct groups understand the content or format of 
the items differently). 

This paper advocates and facilitates the investigation of differential functioning of all 
response options, hereafter, referred to as differential options functioning (DOF). We 
define DOF as an investigation of whether respondents from different groups, with equal 
levels of the attribute being measured, would have different probabilities to select the 
options. The concept of DOF has been introduced using different terminologies such as 
differential distractor functioning (DDF), differential alternative functioning and 
comprehensive differential item functioning (CDIF) in the literature. Although the basic 
concept is very similar, we use the new term DOF to espouse the versatility of studying 
options in various research contexts (we will explain our reasons for using this term in 
more detail later).  

Upmost, we need to point out that DOF is different from the concept of differential 
item functioning (DIF). Statistically, DIF investigates group difference in the 
probabilities of selecting one keyed option based on dichotomised binary data, 
conditioning on the attribute being measured, whereas DOF investigates group difference 
in the probabilities of selecting all options without dichotomising the data. When 
studying DIF in achievement/aptitude test items, the correct answer is often considered as 
a keyed option and coded as 1 and the rest of the incorrect answers are collapsed and 
coded as 0. Correspondingly, DIF only focuses on the keyed option and does not look 
into each option individually. In contrast, DOF investigates all options by looking at the 
unequal conditional probabilities in selecting each of the options chosen by the 
respondents. This feature of DOF helps to understand individuals’ original selection of 
the options, which is not doable with a DIF study.  

Specifically, this paper aims to fulfil the following three purposes in order to 
advocate and facilitate DOF studies:  

1 Reconceptualise the previous approach to DOF in terms of its terminologies, 
purposes and uses. 

2 Propose a simple and integrated analytical method for studying DOF based on the 
known statistical theory of multinomial logistic regression. 

3 Through demonstration with a real data example, provide a proof of concept and a 
guide for application of the proposed DOF method.  
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2 Literature review 

Compared to DIF, there are much fewer methodological and applied works pertaining to 
how groups of individuals with equal ability/attribute being measured, may select 
different response options. Our literature review found 19 related works that appeared 
intermittently from 1980 to 2015 (Abedi et al., 2008; Banks, 2006, 2009; Barton and 
Huynh, 2003; Bolt et al., 2001; Dorans et al., 1992; Green et al., 1989; Kato et al., 2009; 
Marshall, 1983; Middleton and Laitusis, 2007; Penfield, 2008, 2010; Schmitt and 
Bleistein, 1987; Schmitt and Dorans, 1990; Suh and Bolt, 2011; Suh and Talley, 2015; 
Thissen et al., 1993; Veale and Foreman, 1983; Westers and Kelderman, 1991). Among 
these works, the concept of DOF was introduced with various terminologies and a range 
of methods have been proposed for DOF analysis. 

In an early study, Veale and Foreman (1983) introduced the concept of analysing 
examinees’ incorrect responses for assessing cultural bias. Their approach simply 
compared the observed proportions of examinees who selected each of the incorrect 
options between cultural groups. As a more applied approach, log-linear models have 
been employed for studying distractors in various contexts such as gender, disabilities 
and culture (Banks, 2006, 2009; Barton and Huynh, 2003; Green et al., 1989; Marshall, 
1983). In particular, Green et al. (1989) defined DDF as analysing the incorrect item 
responses (i.e. distractors) and investigated DDF based on the log-linear approach. Their 
approach involved a three-way contingency table stratified by the ability levels.  

A group of researchers (Dorans et al., 1992; Middleton and Laitusis, 2007; Schmitt 
and Bleistein, 1987; Schmitt and Dorans, 1990) adopted a descriptive standardisation 
approach, which assessed differential functioning by computing weighted differences 
between the groups. Dorans et al. (1992) introduced CDIF for evaluating all response 
options including the keyed, omitted and not reached. 

Later on, distractors were also studied under the framework of item response theory 
(IRT). Thissen et al. (1993) discussed differential functioning at the option level and 
referred to it as differential alternative functioning by testing the group difference in the 
response curves using a likelihood ratio test. Similarly, Westers and Kelderman (1991) 
studied differential functioning in distractors by comparing the fit of different latent class 
analysis (LCA) models. As an extension, Bolt et al. (2001) studied distractors using a 
mixture IRT of nominal response model (Bock, 1972) and Suh and Bolt (2011) 
introduced an application of a nested logit IRT model for studying distractors. Penfield 
(2008, 2010) proposed a new approach of odds ratio based on a revised nominal response 
model.  

Methods based on logistic regression began to appear almost at the same time as IRT-
based methods. Abedi et al. (2008) employed multi-step binary logistic regression 
(similar to Swarminathan and Rogers, 1990) for studying differential functioning in the 
incorrect responses. However, they only analysed the most common distractor on each 
item. Extending the approach of Abedi et al. (2008), Kato et al. (2009) applied 
multinomial logistic regression to analyse differential functioning in all options.  

A recent work by Suh and Talley (2015) compared the three approaches for detecting 
DDF (log-linear approach, IRT-based approaches and an odds ratio approach). In the 
Appendix, we summarise all the different methods to date.  

Our literature review also looked at the purposes of DOF studies. Nine out of  
19 works discussed DOF in the context of DIF (Banks, 2009; Dorans et al., 1992; 
Penfield, 2010; Schmitt and Bleistein, 1987; Schmitt and Dorans, 1990; Suh and Bolt, 
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2011; Suh and Talley, 2015; Thissen et al., 1993; Westers and Kelderman, 1991). These 
researchers focused their DOF investigation on identifying causes of DIF. With this 
focus, DOF was seen as a secondary analysis after an item is detected as DIF. The other 
10 studies did not discuss DOF in the context of DIF. Five of them treated the option as 
the main character that was subject to an investigation of measurement invariance (Abedi 
et al., 2008; Banks, 2006; Barton and Huynh, 2003; Green et al., 1989; Kato et al., 2009). 
These works focused their purpose of DOF on examining whether options function in the 
same manner for all groups. The remaining five studies mentioned other uses of DOF 
(Bolt et al., 2001; Marshall, 1983; Middleton and Laitusis, 2007; Penfield, 2008; Veale 
and Foreman, 1983). Their purposes included, for instance, recognising distinct groups’ 
perceptions of items, understanding how stimuli attracts or repels distinct groups, 
identifying cognitive (mis)steps and reviewing items.  

Although previous research has introduced several methods for studying DOF, there 
were some challenges in the accessibility and applicability of these methods. Most of the 
existing methods entail a mix of different statistical techniques, complicated 
computations and/or knowledge in new statistical software. Straightforward and 
integrated methods are not readily available to applied researchers. This may be one of 
the reasons why the study of DOF has not been well received in practice. Furthermore, 
the application of DOF was, by and large, limited to post hoc measurement invariance 
investigations in previous research. DOF has often been conducted as a method for 
identifying causes of DIF, a secondary analysis, or to examine measurement invariance at 
the option level once item level DIF is detected. Moreover, these applications of DOF 
were typically limited to achievement/aptitude tests. Although some studies discussed 
other possible uses of studying DOF, the potential uses of DOF were briefly mentioned 
or vaguely alluded to. As a result, many potential uses of DOF are not fully identified 
and may be neglected. Hence, difficulties with methods and lack of awareness of uses 
may keep researchers from studying DOF. To address these issues, this paper aims not 
only to reconceptualise the investigation of DOF but also to propose a new and 
accessible analytical method. 

3 Our conceptualisation of DOF 

In this paper, we attest that DOF should not simply be considered as a post hoc 
subsidiary study for identifying causes of DIF. Rather, DOF should be considered as a 
stand-alone, self-sufficient investigation which can reveal in-depth information and have 
versatile uses that a DIF study cannot accomplish. 

3.1 The term differential options functioning (DOF) 

Our first effort in promoting DOF as an independent study from DIF lends to a 
suggestion of using the term DOF rather than those already existing in the literature. We 
propose the term DOF for the following reasons based on our reflection on the literature 
review. First, the term CDIF used by Dorans et al. (1992) characterises the utility of 
studying options as a secondary analysis for identifying causes of DIF. This term 
obscures other possible uses for studying options. Second, the term DDF used by Green 
et al. (1989) is only suitable for achievement/aptitude types of measures where a specific 
option is considered as the correct answer and the others as ‘distractors’. With items in 
questionnaires/surveys where the respondents are asked to choose a statement of their top 
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choice, no particular option should be considered as the correct answer or the distractor. 
In addition, the term differential ‘distractor’ functioning implies that the correct option is 
not susceptible to differential functioning; this clearly is not the case. The correct option 
should also be subject to investigation. Moreover, the term differential alternative 
functioning used by Thissen et al. (1993) implies that the provided response categories 
are ‘alternatives’ to one another. However, this term is often not applicable when the 
categories are given as mutually competing or contrasting statements for eliciting a 
respondent’s preference, inclination or valuing in a survey/questionnaire. In contrast, our 
suggested term, DOF is more generic, neutral and flexible for wide types of response 
formats designed for different measurement contexts (measurement or assessment for 
different attributes, purposes and uses). 

3.2 Potential uses of DOF 

In previous research, DOF has been often conducted to identify causes of DIF or to 
examine measurement invariance in achievement/aptitude tests. However, there are many 
other advantages to studying individuals’ original response options in various 
measurement contexts. In particular, this paper discusses its potential uses in the two 
contexts: achievement/aptitude tests and questionnaires/surveys. 

In achievement/aptitude tests, one option is selected as the ‘correct’ answer by the 
test developer and the remaining options are often written to represent possible 
misunderstanding, lack of knowledge or missteps to reach the correct answer. In this 
context, DOF can be applied to understand how distinct groups make mistakes differently 
in answering the item while accounting for the ability being measured. This kind of 
application is useful to identify teaching and learning gaps between groups in 
understanding the knowledge or skill an item intends to assess. Say, for example, that 
male and female students are equally capable in math, but female students have higher 
probability in choosing an option written to test a common mistake. This may signal that 
there is some teaching or learning gaps between male and female students. By looking at 
the probability of choosing each of the incorrect options (compared to the correct option 
specified as the keyed option), one can see where each group is more likely or less likely 
to make mistakes. If a group has a higher probability to choose a certain incorrect option 
compared to the other groups (conditioning on ability), it indicates that the group is more 
likely to make a mistake in that option for some reason. Also, DOF can provide 
information about how test-takers with certain ability level (e.g. low or high ability) 
respond to each option by examining the probabilities of selecting options against their 
ability level (a situation of nonuniform DOF, which we will explain later). This can be 
presented by visualising the DOF curves.  

In questionnaires/surveys research where none of the options are considered as the 
‘correct’ answer, options often represent different levels of endorsement (e.g. a rating 
scale; Strongly disagree, Disagree, Agree, Strongly agree) or different choices  
(e.g. ipsative or forced-choice item format; ‘Vanilla’, ‘Strawberry’, ‘Chocolate’). In this 
type of measure, DOF is useful for investigating different response patterns between 
groups by looking at how groups prefer or avoid options controlling for respondents’ 
preference or attitude being elicited by the options. In this context, the keyed (reference) 
option is arbitrary and can be specified by the researchers depending on their specific 
research focus. When no particular option should be treated as the reference option, one 
can choose the option that is most frequently chosen by respondents.  
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DOF is particularly useful when different response patterns are suspected between 
groups. For instance, in an item asking about perception of body weights, it might be 
suspected that females are more likely to answer that they are overweight compared to 
males. This may happen in certain cultures where females are more self-conscious about 
their weight due to social expectation of body image. This response pattern can be 
investigated using DOF by looking into whether and how males and females, controlling 
for their body mass index (BMI) may tend to choose the options representing overweight 
(or non-overweight). Different response patterns between groups of individuals can also 
occur when an item has different types of choices such as personality types. In such 
cases, certain groups may prefer or avoid some choices due to social or cultural norms.  
In the same way, the response patterns of groups can be investigated by looking into how 
the groups are more likely to choose each option when they have the same (scores for) 
types of personality. 

Furthermore, DOF can help understand response tendencies (e.g. response style and 
response set) such as avoidance of the extreme options and preference to the neutral 
option. For instance, one can investigate how different ethnic groups respond to the 
extreme options by comparing the probabilities of choosing the extreme options between 
the groups. 

3.3 Relationship between DIF and DOF 

The relationship between DIF and DOF was not clearly discussed in the literature. 
Rather, it is commonly assumed that DOF occurs when DIF is found. That is, DOF and 
DIF are believed to be equivalent phenomenon that provides the same information. 
However, this may not necessarily be true. In the following, we present four logical 
statements to explain four possible population relationships between DOF and DIF.  
Note that these statements are presented assuming we know the population conditional 
probabilities of choosing the options (holding constant the attribute being measured). 
Also, we assume that there are four options for an item and option A is the keyed option 
with a population probability of choosing option A = p. 

Statement 1: If DIF occurs, then DOF occurs. This statement is true. When DIF 
occurs, the probabilities of choosing option A(p) are different between the groups, see 
Table 1, for example where p1 = 0.25 ≠ p2 = 0.40, hence the aggregate probabilities of 
choosing the non-keyed options (1 − p) will be different between the two groups, (1 − p)1 

= 0.75 ≠ (1 − p)2 = 0.60. It is impossible that two groups have exactly same probabilities 
in all of the other options. This is the logic underlying the belief that DOF is a secondary 
analysis for causes of DIF.  

Table 1 Example of population relationship for Statement 1 

Probability of choosing an option conditioning on ability (trait) 
Population DIF/DOF status Options Group 1 Group 2 

A (key) 0.25 0.40 DIF (favouring group 2) 
B 0.25 0.25 No DOF 
C 0.30 0.30 No DOF 
D 0.20 0.15 DOF (favouring group 1) 
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Statement 2: If DOF occurs, then DIF occurs. This statement is false. A counter-example 
to this statement is presented in Table 2. When DOF occurs, the probabilities of selecting 
the non-keyed options between two groups are different. However, DIF may not occur 
because the probabilities for the keyed option can still be the same between two groups 
(see p1 = p2= 0.25 for an example in Table 2).  

Table 2 Example of population relationship for Statement 2 

Probability of choosing an option conditioning on ability (trait) 
Population DIF/DOF status Options Group 1 Group 2 

A (key) 0.25 0.25 No DIF 
B 0.30 0.25 DOF (favouring group 1) 
C 0.25 0.40 DOF (favouring group 2) 
D 0.20 0.10 DOF (favouring group 1) 

Statement 3: If DOF does not occur, then DIF does not occur. This statement is true.  
If none of the non-keyed options B, C and D show DOF, their probabilities are the same 
across the two groups. The aggregate probabilities for the non-keyed options (1 − p) will 
be the same between the two groups, see (1 − p)1 = (1 − p)2 = 0.55 in Table 3, for 
example. Therefore, the probabilities for the keyed option (p) will be the same between 
the two groups as well, p1 = p2 = 0.45, indicating no DIF. 

Table 3 Example of population relationship for Statement 3 

Probability of choosing an option conditioning on ability (trait) 
Population DIF/DOF status Options Group 1 Group 2 

A (key) 0.45 0.45 No DIF 
B 0.20 0.20 No DOF 
C 0.10 0.10 No DOF 
D 0.25 0.25 No DOF 

Statement 4: If DIF does not occur, then DOF does not occur. This statement is false.  
A counter-example to this statement is presented below. When DIF does not occur, it 
only indicates that the probabilities of choosing the keyed option (p) are the same 
between the two groups, see p1 = p2 = 0.25 in Table 4 for example. It does not require 
the probabilities for the non-keyed options (1 − p) to distribute in the same way between 
the two groups. DOF can occur by showing unequal probabilities between two groups in 
selecting the non-keyed options. 

Table 4 Example of population relationship for Statement 4 

Probability of choosing an option conditioning on ability (trait) 
Population DIF/DOF status Options Group 1 Group 2 

A (key) 0.25 0.25 No DIF 
B 0.30 0.50 DOF (favouring group 2) 
C 0.25 0.10 DOF (favouring group 1) 
D 0.20 0.15 DOF (favouring group 1) 
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From the above explanations for the population relationship between DIF and DOF,  
we can draw the following conclusion. First, the existence of DIF indicates the existence 
of DOF (Statement 1). In this case, a DIF study can be an overall evaluation of the 
existence of DOF. However, a DIF study cannot detect which option has DOF. Second, 
the existence of DOF is not a sign of DIF (Statement 2). A DOF study does not provide 
sufficient evidence for the existence of DIF. Third, the absence of DOF indicates the 
absence of DIF (Statement 3). If an item does not show DOF, then the item is non-DIF, 
either. That is, a DOF study can be used to assess the absence of DIF. Lastly, the absence 
of DIF does not mean that there will be no DOF (Statement 4). Hence, a DIF study does 
not guarantee the absence of DOF. 

4 The proposed analytical method 

Despite its many potential uses, the idea of conducting DOF investigation was not well 
received among applied researchers. In addition to the lack of awareness of the potential 
uses of DOF, we believe that this is partly due to a lack of an integrated and 
straightforward method that can be conducted using popular statistical software packages 
such as SAS, SPSS or R. In fact, various statistical techniques proposed for studying DOF 
are not easily accessible because these methods involve a mix of different techniques, 
additional complicated computations and/or learning new statistical software, all of 
which can be a barrier to the interested researchers who are not measurement 
professionals or psychometricians. 

To facilitate the study of DOF, this paper proposes a set of integrated and 
straightforward procedures for studying DOF. The procedures are suggested based on the 
known theories of multinomial logistic regression (Agresti, 2012; Hosmer et al., 2013; 
Menard, 2002) as well as existing methods for DIF based on logistic regression 
(Swaminathan and Rogers, 1990; Zumbo, 1999). The proposed method is very accessible 
and does not involve a steep learning curve. All procedures can be easily conducted in 
popular statistical software packages and the results can be directly obtained from the 
basic outputs of these packages.  

Note that this paper is not the first to apply multinomial logistic regression in the 
study of DOF. Kato et al. (2009) applied multinomial logistic regression and studied 
DOF based on a likelihood ratio test with the effect sizes of pseudo R2 differences at the 
item level and MADs between the groups’ response characteristic curves at the option 
level. However, the proposed method in this paper is based on different procedures and 
rules. Later in Section 6, we have introduced and demonstrated our proposed method, we 
will discuss more about how our method differs from their works and what new 
contributions our method brings to the literature. Furthermore, the proposed procedures 
take on the odds ratio as the effect size measure as several DOF methods suggested 
(Abedi et al., 2008; Banks, 2006, 2009; Penfield, 2008, 2010). 

The next section provides a real data demonstration that serves as a proof of concept 
and guide for application of our proposed method. The step-by step procedures will be 
explained in the demonstration. The data were retrieved from the 2011 Progress in 
International Reading Literacy Study (PIRLS) of Canada. All analyses were conducted 
using maximum likelihood estimation in SPSS. 



   

 

   

   
 

   

   

 

   

   102 M. Park and A.D. Wu    
 

    
 
 

   

   
 

   

   

 

   

       
 

5 Demonstration of the proposed method 

5.1 Participants and measure 

Progress in International Reading Literacy Study 2011 international database provides 
students’ original responses to the items assessing students’ reading ability. Booklet 13 
was used for this demonstration. The dataset contains students’ actual choices from the 
four options of 15 multiple-choice items (out of a total of 30 items). One of the four 
options in each item was keyed as the correct answer by PIRLS experts and test 
developers. The sample includes 4,805 fourth grade students in Canada (50.7% males 
and 49.3% females). The students took either the English version (72.4%, coded as 0) or 
the French version (27.6%, coded as 1) of the reading assessment. The two test-language 
groups were treated as the grouping variable in the present DOF demonstration. 

5.2 The proposed analytical procedures 

The set of four response options of each item was analysed with three multinomial 
logistic regression models given as, 

1
(  | )Model 1 :        
(  | ) j

P Y j Tlog a b T
P Y k T

= = +
=

 (1) 

1 2
(  | , )Model 2 :     
(  | , ) j

P Y j T Glog a b T b G
P Y k T G

= = + +
=

 (2) 

( )1 2 3
(  | , )Model3 :        *
(  | , ) j

P Y j T Glog a b T b G b T G
P Y k T G

= = + + +
=

 (3) 

where j = 1 … J denotes the categories of the available options, k denotes the reference 
(key) category (in this demo, the correct option), T is the rest total score (the sum of the 
item scores of the entire test excluding the score of the item being studied for DOF), G is 
the grouping variable; in this demo, the English-language is the reference group and the 
French-language is the focal group), *  T G is the product of the rest total score and the 
grouping variable, indicating the interaction between the two variables. 

On the left-hand side of Eqs. (1)–(3), the logits (hence the probabilities) of selecting 
each non-keyed option j (vs. selecting the keyed option k) are contrasted and modelled as 
linear models of the predictors on the right-hand side of the equations. That is, for each 
item with J options (J = 4 in this demo), there are J − 1 paired contrasts being modelled 
simultaneously. Simply put, a multinomial logistic regression for J response categories 
can be seen as a set of simultaneous J − 1 binary logistic regressions. 

Model 1 in Eq. (1) can be considered as the baseline model which includes only the 
variable T, the rest total scores. The rest total scores were standardised and served as a 
proxy of students’ true level of reading ability and controlled for examining DOF.  
Model 2 adds the grouping variable G to examine uniform DOF. Uniform DOF is a 
scenario where the groups’ influence on the option selection is modelled as a constant 
shift (a decrease or increase) in the logit. This constant shift is indicated by the estimate 
of 2b  for G of Model 2. Model 3 includes an additional interaction term of T*G and 
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examines the existence of non-uniform DOF. Non-uniform DOF is a scenario where the 
group’s difference in the logit (i.e. 2b ) is further influenced by students’ ability T. The 
presence of the moderated group influence is indicated by the estimate of 3b  for T*G of 
Model 3. To further explain the non-uniform DOF, Model 3 in Eq. (3) is rearranged into 
Eq. (3a). In (3a), the overall influence of the grouping variable G is expressed as a 
constant shift of 2 b plus the moderating function of 3b T  that characterises the non-
uniform DOF: 

( )1 2 3
(  | , )Model3a :     
(  | , ) j

P Y j T Glog b T b b T G
P Y k T G

α= = + + +
=

 (3a) 

5.3 Stage-wise approach 

The statistical inferences of DOF are determined in two stages based on the results of 
Models 1–3. Stage 1 detects the presence of DOF simultaneously for the J − 1 non-keyed 
options (vs. the keyed option) at the item level. This step is to inspect whether at least one 
option shows DOF, either uniform or non-uniform. Stage 2 detects DOF at the option 
level for each of the individual J − 1 options to inspect which and how option(s) 
functions differently for the groups, if item-level DOF is detected in stage 1. 

5.3.1 Stage 1: Simultaneous DOF detection at the item level 
At stage one, the presence of uniform and non-uniform DOF is tested simultaneously for 
the J − 1 contrasts of the non-keyed options (vs. the keyed option) by two likelihood ratio 
tests (LRT). Each LRT tests the −2 log likelihood difference (−2LLΔ) between two 
nested models. Both −2LLΔ values are tested against 

2χ  distributions with degrees of 
freedom = dfΔ (difference in degrees of freedom between the two models). The first LRT 
detects the non-uniform DOF by testing the −2LLΔ between Model 2 and Model 3. The 
second LRT detects the uniform DOF by testing the −2LLΔ between Model 1 and  
Model 2. Together, the results of the two LRTs will inform one of the three exclusive 
conclusions about an item: (a) at least one non-uniform DOF (denoted as non-
uniform1or+) if the first LRT is significant, (b) at least one uniform DOF (denoted as 
uniform1or+) if the second LRT is significant, but not the first, and (c) no DOF if neither 
of the two LRTs is significant. 

5.3.2 Stage 2: Individual DOF detection at the option level 
The presence of DOF detected at the item level in Stage 1 only determines whether at 
least one of the options is detected as DOF (non-uniform1or+ or uniform1or+). Stage 2 
examines DOF at the option level to find out which and how each of the individual J − 1 
options functions differently for the groups. Note that only items that are found to be 
non-uniform1or+ or uniform1or+ in Stage 1 will be subject to examination of option-level 
DOF in Stage 2. To understand the Stage 2 procedures, recall that DOF is examined for  
J − 1 pairs of logits, contrasting the J − 1 non-keyed options to the keyed option k  
(3 pairs in the demo). Each logit is expressed as a linear model of the predictors in  
Eq. (1)–(3). The predictors’ regression coefficients for each of the J − 1 paired contrasts 
will be examined for statistical inference (except for the total score that is regarded as a 
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controlled variable). Moreover, the option-level DOF procedures are further broken 
down by whether an item is detected as non-uniform1or+ or uniform1or+ in Stage 1. 

5.3.2.1 Items detected as non-uniform1or+ DOF in Stage 1: Reporting Model 3 
If an item is detected as non-uniform1or+ in Stage 1, it signals that at least one of the J − 1 
options functions non-uniformly. The Model 3 regression coefficients will be tested for 
statistical significance by the Wald 2χ  test. The two Wald 2χ  tests for 2b  of G and 3 b  of 
T*G, predicting each J − 1 contrast in Model 3, will reach one of the following three 
exclusive conclusions. (1) As long as the regression coefficient 3b  of T*G is statistically 
significant, it is concluded that the jth option functions non-uniformly for the groups.  
(2) If the regression coefficient 3b  of T*G is statistically non-significant but the 
regression coefficient 2b  of G is statistically significant, it is concluded that the jth option 
functions uniformly for the groups. (3) If neither the coefficient 2b nor 3b  is statistically 
significant, it is concluded that the jth option does not function differentially for the 
groups. Note that testing and reporting the statistical significance of the Model 2 
regression coefficients are not needed because they are irrelevant when an item is 
detected as non-uniform1or+ in Stage 1. 

5.3.2.2 Items detected as uniform1or+ DOF in Stage 1: Reporting Model 2 
If an item is detected as uniform1or+ in Stage 1, it signals that at least one of the J − 1 
options functions uniformly. The Model 2 regression coefficients will be tested for 
statistical significance by the Wald

2χ  test. The Wald 
2χ  test for 2b of G, predicting 

each J − 1 contrast in Model 2, will reach one of two conclusions. (1) If 2b is statistically 
significant, it is concluded that the jth option functions uniformly for the groups. (2)  
If 2  b is statistically non-significant, it is concluded that the jth option does not function 
differentially for the groups. Note that testing and reporting the statistical significance of 
the Model 3 regression coefficients are not needed because they are irrelevant when an 
item is detected as uniform1or+ in Stage 1. 

5.3.2.3 Effect size and option characteristic curves 
For all Stage 2 detection of DOF, the odds ratio (OR) will aid the interpretation for both 
non-uniform and uniform DOF. The odds ratio of selecting the jth option (vs. the keyed 
option) comparing the focal group to the reference group are reported as a measure of 
size for DOF. A population odds ratio equal to one indicates DOF is absent. For uniform 
DOF, the odds ratio can be simply interpreted as a constant magnitude of DOF because 
the direction and the size of group difference are constant in the logit form for the entire 
continuum of the total score. Nonetheless, for non-uniform DOF, the odds ratio should be 
interpreted at each level of total score because the direction and/or the magnitude of DOF 
can vary across the continuum of the total score. The interpretation of odds ratio will be 
illustrated in Section 5. 

We also tentatively take Ferguson’s (2009) odds ratio 2, 3 and 4 as the cut-offs for 
small, medium and large DOF. Please note that Ferguson’s (2009) cut-offs were 
suggested for logistic regression in general. We only suggest considering them as a rough 
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guide for interpreting the size of DOF. Researchers must consider multiple factors 
including the groups being compared, the attribute being measured, and the purpose of 
studying DOF when determining the cut-off for interpreting their own study results.  

The option characteristic curves (OCCs) will help to visualise whether and how an 
option functions differentially between groups (see Figure 1). That is, these curves show 
whether each option shows no DOF, uniform DOF, or non-uniform DOF. Furthermore, 
the OCCs can help to visualise the magnitude of uniform DOF (the area between curves 
of the groups). They can also help to examine the pattern of non-uniform DOF; the 
moderating effect of ability (total) on DOF.  

Figure 1 Option Characteristic Curves (OCCs) showing which and how the non-keyed options 
(vs. the keyed option) function differentially 

 

Figure 2 summarises our proposed two-stage procedures for studying DOF. The next 
section demonstrates the results based on the procedures in Figure 2 with the PIRLS data. 
All of the results were obtained using SPSS 16.0 and the OCCs were graphed in Excel. 
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Figure 2 Procedures for the proposed method of multinomial logistic regression for DOF 

 

6 Results 

6.1 Stage 1: Simultaneous DOF detection at the item level 

The results for the LRT of Stage 1 are presented in Table 5. All 15 multiple-choice items 
were detected as showing either non-uniform1or+ or uniform1or+ DOF at the item level. 
That is, all items had at least one option that functioned differently for the two  
test-language groups. Six items (Items 2, 5, 9, 12, 13 and 15) were tested positive for 
non-uniform1or+ (the LRT for the non-uniform DOF was significant). The other nine 
items were tested positive for uniform1or+ DOF (the LRT for non-uniform1or+ was  
non-significant but was significant for uniform1or+). 

Table 5 Results for likelihood ratio tests for item-level simultaneous DOF 

Item 
(key) Model −2LL df 

Likelihood ratio test (dfΔ = 3) 

DOF 
conclusion 

Non-uniform 
(M2−M3) Uniform (M1−M2) 

−2LLΔ p −2LLΔ p 
1 (D) M1 760.386 3 0.693 0.875 24.421 <0.001 Uniform1or+ 

M2 735.965 6  
M3 735.272 9  
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Table 5 Results for likelihood ratio tests for item-level simultaneous DOF (continued) 

Item 
(key) Model −2LL df 

Likelihood ratio test (dfΔ = 3) 

DOF 
conclusion 

Non-uniform (M2−M3) Uniform (M1−M2) 

−2LLΔ p −2LLΔ p 
2 (B) M1 967.254 3 23.486 <0.001 26.186 <0.001 Non-

Uniform1or+ 
M2 941.068 6      
M3 917.582 9      

3 (C) M1 697.544 3 3.529 0.317 15.952 0.001 Uniform1or+ 
M2 681.592 6      
M3 678.063 9      

4 (C) M1 605.613 3 4.830 0.185 21.189 <0.001 Uniform1or+ 
M2 584.424 6      
M3 579.594 9      

5 (A) M1 903.986 3 103.131 <0.001 39.550 <0.001 Non-
Uniform1or+ 

M2 864.436 6      
M3 761.305 9      

6 (A) M1 859.426 3 5.262 0.154 51.833 <0.001 Uniform1or+ 
 M2 807.593 6      
 M3 802.331 9      
7 (D) M1 652.577 3 5.800 0.121 116.197 <0.001 Uniform1or+ 
 M2 536.38 6      
 M3 530.58 9      
8 (C) M1 771.601 3 3.940 0.268 35.397 <0.001 Uniform1or+ 
 M2 736.204 6      
 M3 732.264 9      
9 (B) M1 862.649 3 18.170 <0.001 25.751 <0.001 Non-

Uniform1or+ 
 M2 836.898 6      
 M3 818.728 9      
10 
(A) 

M1 1072.586 3 6.920 0.074 98.992 <0.001 Uniform1or+ 

 M2 973.594 6      
 M3 966.674 9      
11 
(B) 

M1 805.395 3 0.174 0.982 42.279 <0.001 Uniform1or+ 

 M2 763.116 6      
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Table 5 Results for likelihood ratio tests for item-level simultaneous DOF (continued) 

Item 
(key) Model −2LL df 

Likelihood ratio test (dfΔ = 3) 

DOF 
conclusion 

Non-uniform (M2−M3) Uniform (M1−M2) 

−2LLΔ p −2LLΔ p 
 M3 762.942 9      
12 
(D) 

M1 1151.615 3 80.132 <0.001 184.581 <0.001 Non-
Uniform1or+ 

 M2 967.034 6      
 M3 886.902 9      
13 
(C) 

M1 808.422 3 8.748 0.033 20.753 <0.001 Non-
Uniform1or+ 

 M2 787.669 6      
 M3 778.921 9      
14 
(A) 

M1 975.659 3 0.454 0.929 16.014 0.001 Uniform1or+ 

 M2 959.645 6      
 M3 959.191 9      
15 
(D) 

M1 937.934 3 11.391 0.010 0.093 0.993 Non-
Uniform1or+ 

 M2 937.841 6  
 M3 926.450 9  

Note: −2LL: −2 times log likelihood; −2LLΔ: −2 times LL difference 
between two models; dfΔ: degrees of freedom difference between two 
models. Statistically likelihood ratio tests (LRT) at α = 0.05 are 
highlighted in bold. In the last column, an item was considered as 
showing at least one non-uniform DOF (non-uniform1or+) if the LRT 
(M2−M3) was significant, as showing at least one uniform DOF 
(uniform1or+) if the LRT (M1−M2) was significant but not the LRT 
(M2−M3), and as having no DOF if neither of the two LRTs was 
significant. 

6.2 Stage 2: Individual DOF detection at the option level 

6.2.1 Items detected as non-uniform1or+ DOF in Stage 1: Reporting Model 3 

Table 6 reports the Wald
2 χ  test for items that had at least one option detected as non-

uniform1or+ in Stage 1. We chose two items, Item 5 and Item 12, to demonstrate the 
interpretation of the results. 
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Table 6 Wald χ2 test results for regression coefficients in Model 3 (for individual options of 
non-uniform1or+ DOF items) 

Item (key) Option Predictor b s. e. Wald χ2 p Odds DOF conclusion 

2 (B) A T −0.567 0.113 25.009 <0.001 0.567  

 A G 0.244 0.128 3.611 0.057 1.277  

 A T*G −0.407 0.130 9.741 0.002 0.666 Non-uniform 

 C T −0.490 0.070 49.344 <0.001 0.613  

 C G −0.284 0.077 13.614 <0.001 0.752  

 C T*G −0.391 0.085 21.337 <0.001 0.676 Non-uniform 

 D T −1.432 0.130 120.858 <0.001 0.239  

 D G −0.261 0.202 1.664 0.197 0.770  

 D T*G −0.362 0.160 5.129 0.024 0.696 Non-uniform 

5 (A) B T −1.066 0.185 33.305 <0.001 0.344  

 B G 0.767 0.243 9.938 0.002 2.153 Uniform 

 B T*G −0.237 0.204 1.353 0.245 0.789  

 C T −1.453 0.139 109.510 <0.001 0.234 No 

 C G 0.254 0.203 1.569 0.210 1.289  

 C T*G −0.051 0.163 0.100 0.752 0.950  

 D T 0.020 0.097 0.044 0.833 1.021  

 D G −0.777 0.117 44.230 <0.001 0.460  

 D T*G −1.235 0.124 98.959 <0.001 0.291 Non-uniform 

9 (B) A T −1.080 0.114 89.273 <0.001 0.339  

 A G −0.342 0.153 4.962 0.026 0.711 Uniform 

 A T*G 0.000 0.137 0.000 1.000 1.000  

 C T −1.303 0.100 170.106 <0.001 0.272  

 C G −0.328 0.134 5.972 0.015 0.720 Uniform 

 C T*G 0.164 0.120 1.881 0.170 1.178  

 D T −0.336 0.126 7.087 0.008 0.715  

 D G −0.391 0.142 7.571 0.006 0.677  

 D T*G −0.550 0.148 13.725 <0.001 0.577 Non-uniform 

12 (D) A T −1.324 0.166 63.989 <0.001 0.266 No 

 A G 0.202 0.243 0.691 0.406 1.224  

 A T*G 0.082 0.189 0.189 0.664 1.086  
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Table 6 Wald χ 2 test results for regression coefficients in Model 3 (for individual options of 
non-uniform1or+ DOF items) (continued) 

Item (key) Option Predictor b s. e. Wald χ2 p Odds DOF conclusion 

 B T −0.659 0.096 47.403 <0.001 0.517  

 B G −1.510 0.142 113.710 <0.001 0.221  

 B T*G −0.693 0.132 27.353 <0.001 0.500 Non-uniform 

 C T −0.412 0.069 36.061 <0.001 0.662  

 C G −0.980 0.080 151.800 <0.001 0.375  

 C T*G −0.699 0.086 66.404 <0.001 0.497 Non-uniform 

13 (C) A T −2.553 0.281 82.424 <0.001 0.078  

 A G 1.692 0.491 11.859 0.001 5.431  

 A T*G 0.799 0.306 6.839 0.009 2.223 Non-uniform 

 B T −1.490 0.133 126.195 <0.001 0.225 No 

 B G 0.247 0.187 1.749 0.186 1.280  

 B T*G 0.204 0.154 1.750 0.186 1.227  

 D T −0.409 0.076 29.187 <0.001 0.665  

 D G 0.275 0.079 12.062 0.001 1.317 Uniform 

 D T*G 0.108 0.087 1.534 0.216 1.114  

15 (D) A T −1.175 0.107 120.445 <0.001 0.309  

 A G −0.188 0.136 1.910 0.167 0.828  

 A T*G −0.404 0.130 9.625 0.002 0.668 Non-uniform 

 B T −0.437 0.087 25.053 <0.001 0.646  

 B G −0.025 0.092 0.077 0.782 0.975  

 B T*G −0.245 0.103 5.595 0.018 0.783 Non-uniform 

 C T −1.092 0.113 93.639 <0.001 0.336 No 

 C G −0.001 0.139 0.000 0.996 0.999  

 C T*G −0.182 0.135 1.821 0.177 0.834  

Note: Options with significant regression coefficients of G or T*G are 
highlighted in bold. In the last column, as long as the regression 
coefficient of T*G was significant, the option was considered 
functioning non-uniformly; if the regression coefficient of T*G was 
non-significant but of G was significant, the option was considered 
functioning uniformly; if neither the coefficient of G nor of T*G was 
significant, the option was considered not functioning differentially. 

Item 5 was flagged as non-uniform1or+ DOF at the item level in Stage 1, 2 32 M MLL −− Δ = 
103.13, df Δ  = 3, and p < 0.05, which indicates at least one option showed non-uniform 
DOF (see Item 5 in Table 5). To examine the individual options of Item 5 in Stage 2, the 
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regression coefficients of the two predictors of G and T*G for each option (vs. keyed 
option A) from Model 3 were examined (see Item 5 in Table 6). For option B, only the 
regression coefficient of G, Test Language, was significant, b = 0.78, Wald 

2χ (1) = 
9.94, p = 0.002, and odds ratio = 2.15, indicating that option B showed uniform DOF. 
The odds of choosing option B (vs. the keyed option A) were 2.15 times higher for the 
French-test group than for the English-test group. This suggests that the French-test 
group was more likely to choose option B. For option C, both the regression coefficients 
for G and T*G predictors were non-significant, indicating option C showed no DOF. 
Lastly, for option D, the regression coefficient of T*G variable was significant,  
b = −1.24, Wald 

2χ (1) = 98.96, and p < 0.001, and odds ratio = 0.29, indicating 
significant non-uniform DOF. Remember that the odds ratio in the case of non-uniform 
DOF needs to be interpreted at each level of the total score because the magnitude of 
DOF varies depending on the level of the total score. For demonstrative purpose, the 
odds ratio of non-uniform DOF was interpreted only at the average total score  
(i.e. standardised total score = 0). Thus, the odds of choosing option D (vs. the keyed 
option A) was 3.45 times higher for the English-test group than for the French-test group 
at the average total score (the odds ratio was inverted for ease of interpretation, i.e. 1/0.29 
= 3.45). The three graphs in first row of Figure 1 display the OCCs for Item 5 and 
summarise which and how the options function differentially. 

Item 12 was also flagged as non-uniform1or+ DOF at the item level, 2 32 M MLL −− Δ  = 
80.13, df Δ  = 3, and p < 0.05. Therefore, regression coefficients of the two predictors of 
G and T*G for each option (vs. the keyed option D) from Model 3 were examined for 
DOF at the option level in Stage 2 (see Item 12 in Table 6). Option A showed no DOF 
because neither the regression coefficient of G nor of T*G was statistically significant. 
The regression coefficients of T*G for both options B and C were significant, therefore, 
options B and C showed non-uniform DOF. For option B, b = −0.69, Wald 

2χ (1) = 
27.35, p < 0.001, and odds ratio = 0.50; for option C, b = −0.70, Wald 2χ (1) = 66.40,  
p < 0.001, and odds ratio = 0.50. Both option B and C were more appealing to the 
English-test group than the French-test group. The odds were two times higher  
(1/0.5 = 2) when comparing the groups at the average total score. The three graphs in the 
second row of Figure 1 display the OCCs for Item 12 and summarise which and how the 
options function differentially. 

6.2.2 Items detected as uniform1or+ DOF in Stage 1: Reporting model 2 

Table 7 reports the Wald
2  χ test for items that had at least one option detected as 

uniform1or+ in Stage 1. We chose two items, Item 7 and Item 10, to demonstrate the 
interpretation of the results. 
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Table 7 Wald χ2 test results for regression coefficients in Model 2 (for individual options of 
Uniform1or+ DOF items) 

Item (key) Option Predictor b s.e. Wald χ2 p Odds DOF conclusion 

1 (D) A T −1.143 0.073 245.562 <0.001 0.319 No 

 A G −0.192 0.139 1.927 0.165 0.825  

 B T −1.111 0.059 355.618 <0.001 0.329  

 B G 0.513 0.126 16.484 <0.001 1.670 Uniform 

 C T −1.192 0.099 145.511 <0.001 0.304  

 C G 0.385 0.205 3.542 0.060 1.470 No 

3 (C) A T −0.780 0.048 264.926 <0.001 0.458  

 A G −0.155 0.097 2.538 0.111 0.857 No 

 B T −1.961 0.220 79.209 <0.001 0.141  

 B G −0.328 0.334 0.960 0.327 0.721 No 

 D T −1.422 0.078 332.276 <0.001 0.241  

 D G −0.530 0.136 15.211 <0.001 0.589 Uniform 

4 (C) A T −1.944 0.167 135.147 <0.001 0.143  

 A G −0.626 0.245 6.559 0.001 0.535 Uniform 

 B T −1.810 0.099 335.739 <0.001 0.164  

 B G −0.538 0.151 12.707 <0.001 0.584 Uniform 

 D T −1.729 0.100 300.553 <0.001 0.177  

 D G −0.463 0.157 8.728 0.003 0.630 Uniform 

6 (A) B T −1.458 0.072 415.785 <0.001 0.233  

 B G −0.601 0.127 22.470 <0.001 0.548 Uniform 

 C T −1.072 0.048 491.590 <0.001 0.342  

 C G −0.584 0.088 43.706 <0.001 0.558 Uniform 

 D T −1.583 0.090 307.788 <0.001 0.205  

 D G −0.378 0.162 5.437 0.020 0.685 Uniform 

7 (D) A T −1.755 0.131 178.400 <0.001 0.173  

 A G 0.804 0.239 11.311 0.001 2.234 Uniform 

 B T −1.385 0.117 140.158 <0.001 0.250  

 B G 1.988 0.357 30.957 <0.001 7.304 Uniform 

 C T −1.198 0.072 273.525 <0.001 0.302  

 C G 1.380 0.182 57.169 <0.001 3.973 Uniform 

8 (C) A T −0.951 0.062 236.080 <0.001 0.386  
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Table 7 Wald χ2 test results for regression coefficients in Model 2 (for individual options of 
Uniform1or+ DOF items) (continued) 

Item 
(key) Option Predictor b s.e. Wald χ2 p Odds 

DOF 
conclusion 

 A G −0.701 0.118 35.304 <0.001 0.496 Uniform 

 B T −1.022 0.053 378.058 <0.001 0.360  

 B G −0.219 0.105 4.406 0.036 0.803 Uniform 

 D T −1.362 0.138 97.780 <0.001 0.256  

 D G −0.165 0.258 0.406 0.524 0.848 No 

10 (A) B T −0.691 0.045 240.128 <0.001 0.501  

 B G −0.376 0.088 18.173 <0.001 0.686 Uniform 

 C T −1.021 0.060 286.539 <0.001 0.360  

 C G 0.657 0.140 22.088 <0.001 1.930 Uniform 

 D T −0.737 0.044 277.148 <0.001 0.479  

 D G 0.587 0.101 33.843 <0.001 1.799 Uniform 

11 (B) A T −1.354 0.068 395.165 <0.001 0.258  

 A G 0.630 0.139 20.620 <0.001 1.878 Uniform 

 C T −1.360 0.117 135.474 <0.001 0.257  

 C G 0.279 0.224 1.547 0.214 1.322 No 

 D T −0.815 0.044 337.059 <0.001 0.443  

 D G 0.507 0.096 28.106 <0.001 1.661 Uniform 

14 (A) B T −1.028 0.059 306.369 <0.001 0.358  

 B G 0.186 0.118 2.463 0.117 1.204 No 

 C T −1.165 0.066 307.648 <0.001 0.312  

 C G 0.443 0.140 10.051 0.002 1.558 Uniform 

 D T −0.999 0.043 534.670 <0.001 0.368  

 D G 0.266 0.085 9.772 0.002 1.305 Uniform 

Note: Options with significant regression coefficients of G are highlighted in 
bold. In the last column, if the regression coefficient of G was 
significant, the option was considered functioning uniformly; if the 
regression coefficient of G was non-significant, the option was 
considered as not functioning differentially. 

Item 7 was detected as uniform1or+ DOF at the item level in Stage 1, 1 22 M MLL −− Δ  = 
116.20, df Δ  = 3, and p < 0.05. To detect DOF at the option level in Stage 2, the 
regression coefficient of the predictor G for each option (vs. the keyed option D) from 
Model 2 was examined. For all three non-keyed options, the regression coefficients of 
predictor of G were significant, indicating the presence of uniform DOF (see Item 7 in 
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Table 7). For option A, b = 0.80, Wald 
2χ (1) = 11.31, p = 0.001, and odds ratio = 2.23; 

for option B, b = 1.99, Wald 
2χ (1) = 30.96, p < 0.001, and odds ratio = 7.30. For option 

C, b = 1.38, Wald 
2χ (1) = 57.17, p < 0.001, and odds ratio = 3.97. The odds ratios 

indicate that the French group was more likely to choose all three non-keyed options. 
That is, all non-keyed responses were more appealing to the French group. The three 
graphs in third row of Figure 1 display the OCCs for Item 7 and summarise which and 
how the options function differentially. 

Item 10 was also detected as uniform1or+ at the item level in Stage 1, 1 22 M MLL −− Δ  = 
98.99, df Δ = 3, p < 0.05. For all non-keyed options of B, C and D, the regression 
coefficients of the predictor G in Model 2 were significant indicating the presence of 
uniform DOF (see Item 10 in Table 7). For option B, b = −0.38, Wald 2χ (1) = 18.17,  

p < 0.001, and odds ratio = 0.69. For option C, b = 0.66, Wald 
2χ (1) = 22.09, p < 0.001, 

and odds ratio = 1.93. For option D, b = 0.59, Wald 
2χ (1) = 33.84, p < 0.001, and odds 

ratio = 1.80. Options C and D were more appealing to the French-test group, but option B 
was more appealing to the English-test group. The three graphs in the last row of  
Figure 1 display the OCCs for Item 10 and summarise which and how the options 
function differentially. 

Table 8 reports the DOF results which are summarised for the entire test. Of the total 
of 45 non-keyed options (3 for each of the 15 items), 10 options (22.2%) were detected 
as non-uniform DOF, 24 options (53.3%) were detected as uniform DOF, and 11 options 
(24.4%) were detected non-DOF when contrasted with the keyed options. Although it is 
not the focus of this paper, the DIF results based on likelihood ratio test of binary logistic 
regression were also reported in the last column of Table 8 for readers who are interested 
in the comparison. 

Table 8 Test-level summary of DOF results 

DOF 

DIF 
Stage 1: Item-level Stage 2: Option-level 
Non-uniform1or+ Non-uniform Uniform Non-DOF 
Item 2 3 0 0 Y 
Item 5 1 1 1 Y 
Item 9 1 2 0 Y 
Item 12 2 0 1 Y 
Item 13 1 1 1 Y 
Item 15 2 0 1 N 
Uniform1or+     
Item 1 NA 1 2 N 
Item 3 NA 1 2 Y 
Item 4 NA 3 0 Y 
Item 6 NA 3 0 Y 
Item 7 NA 3 0 Y 
Item 8 NA 2 1 Y 
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Table 8 Test-level summary of DOF results (continued) 

DOF 

DIF 
Stage 1: Item-level Stage 2: Option-level 
Non-uniform1or+ Non-uniform Uniform Non-DOF 
Item 10 NA 3 0 N 
Item 11 NA 2 1 Y 
Item 14 NA 2 1 Y 
Total # (%) 10 (22.2%) 24 (53.3%) 11 (24.4%) 12 (80%) 

7 Discussion 

Despite the potential versatility of DOF studies, previous research often limited DOF 
application to examining measurement invariance. However, there are many advantages 
to studying individuals’ original responses when DOF is studied with different focuses 
extending beyond identifying causes of DIF. This paper explicates the potential uses of 
DOF as an independent investigation that can reveal in-depth and fruitful information by 
looking into individuals’ original responses. To extend the currently limited application 
of DOF, we chose to use the more generic and neutral term, DOF. This term is more 
suitable for a broader range of measurement contexts and purposes for both 
achievement/aptitude tests and questionnaires/surveys. 

To facilitate the application of DOF, we further proposed a set of integrated and 
straightforward procedures, based on maximum-likelihood multinomial logistic 
regression. There are three major advantageous features of this methods. First, the 
proposed method can be readily conducted by anyone who has experience in logistic 
regression using popular software packages. Second, although our method was 
demonstrated with only four response options and two groups, it can investigate a greater 
number of options and more than two groups without entailing any additional 
complexities. This method is capable of analysing multiple options and multiple groups 
simultaneously, which cannot be easily done with other methods. Finally, this method is 
comprehensive in terms of providing useful information such as statistical inference, 
effect size and OCC simultaneously that can enhance the understanding of DOF results.  

Readers are reminded that logistic regression with categorical predictors, based on 
maximum likelihood estimation, can run into sparse data problems. The scenario of 
sparse data is considered problematic for typical utilities of logistic regression in 
substantive research where the focus is to predict or classify the outcome categories. 
However, when logistic regression is applied to investigate measurement invariance with 
an eye on examining how the response categories may function differently between 
groups, a sparse data scenario can be a manifestation that certain option does not work 
well for certain group because that option is never or hardly chosen by certain group.  
In other words, when the response categories themselves are the very subject of study, 
sparse data can reveal the possibility of DOF first hand.  

We acknowledge the possibility that the stage 1 likelihood ratio test may suggest the 
presence of DOF at the item level but the stage 2 Wald 

2χ  test detects no DOF at the 
option level. This scenario could happen because the Wald 

2χ  test is based on a subset 



   

 

   

   
 

   

   

 

   

   116 M. Park and A.D. Wu    
 

    
 
 

   

   
 

   

   

 

   

       
 

of the sample (the subset who select the specific options being contrasted), hence has less 
statistical power than the likelihood ratio test, which is based on the entire sample  
(the likelihood of the entire data). Also, the logistic regression literature has documented 
that the Wald 

2χ  test can lack of statistical power with sparse data (fewer than 10 event 
cases per predictor) (e.g. Peduzzi et al., 1996). In this case, we recommend that the 
likelihood ratio test rules over the Wald 

2χ  test because for small to moderate sample 
sizes, the likelihood-ratio test is usually more reliable than the Wald 

2χ  test (Agresti, 
2012, p. 12). In this case, odds ratio for all options should be examined (despite the 
nonsignificant results of the Wald 

2χ  test) to see which option deserves further attention. 
Our proposed method suggests using both statistical inference (p-value) and odds 

ratio effect size jointly (neither precedes the other) for understanding DOF in Stage 2. 
This practice may encounter the following two scenarios: a nonsignificant Wald 

2χ  test 
with a large observed odds ratio or a significant Wald 

2χ  test with a small observed odds 
ratio. In both scenarios, we found that reviewing both the p-value and the effect size can 
inform mutually which option needs further attention. The former may happen when an 
option is rarely chosen by respondents (a sparse data problem, i.e. very small sample size 
for the contrasted options). If a suspiciously large effect size is observed, one should look 
into whether it is an unreliable result due to small sample size. The latter scenario 
indicates that the Wald 

2χ  test detects a small effect. In this case, the researcher’s 
discretion is needed to judge whether the small effect is too trivial to worth further 
attention.  

We would like to point out that this paper is not the first to suggest the use of 
multinomial logistic regression and odds ratio for understanding DOF. As we noted in 
the literature review, Kato et al. (2009) introduced the use of multinomial logistic 
regression for DOF and Penfield (2008) was one of the first to introduce the use of odds 
ratio as the effect size of DOF (associated with a nominal response IRT model). 
However, our proposed method differs from theirs in many ways and lends to more 
streamlined and integrated procedures. 

The approach of Kato et al. (2009) to DOF (or, in their term, DDF) is part of the 
larger investigation of DIF. Although they also employed a likelihood ratio test as the 
method for simultaneous detection of DOF at the item-level (which they viewed as DIF 
detection), they did not consider the existence of non-uniform DOF. Only one single 
likelihood ratio test was conducted to detect uniform DOF at the item level. Also, instead 
of taking advantage of inferential statistics of the Wald 

2χ  test and the natural effect size 
measure of odds ratio in the formal theories of logistic regression, their determination of 
DOF at the option level was based on a descriptive statistics of mean absolute difference 
(MAD) between two OCCs (as they called RCCs). Unfortunately, most popular statistical 
packages do not provide a measure of MAD; researchers have to compute them for all 
the options of all the items in order to conclude which particular option is DOF. In 
contrast, most popular statistical packages, if not all, automatically provide Wald 2χ  
tests and odds ratios for multinomial logistic regression that can be readily used for DOF 
conclusion and effect size interpretation. 

The approach of Penfield (2008) using the odds ratio as the effect size of DOF is in 
line with our method. However, his odds ratio measure was obtained based on a fairly 
complicated IRT-based nominal response model which may be unfamiliar to many 
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applied researchers. This approach was further complicated by a revision of a typical IRT 
nominal response model in order to produce interpretable odds ratios. In contrast, our 
method based on multinomial logistic regression is straightforward as long as the 
researchers have some basic knowledge and experience in logistic regression.  

Purification of the total scores is a regular step of DIF procedures. Purification 
iteratively removes the items that are detected as DIF in the previous run from the 
summing of the total scores in the subsequent run of DIF. A purified total score is 
considered as a better approximation of an individual’s true ability. The procedures of 
purification were not considered in our demonstration of the DOF procedures. This was 
because all items were detected to have at least one option functioning differently. In 
general, it is expected that the proportion of items that have at least one option showing 
DOF will be large. Removing any DOF items from summing the total scores may not 
serve the original purpose of purification. That is, a total score based on a small number 
of items can be an even poorer approximation of individuals’ true ability. It is, however, 
viable to purify the total score for a DOF study by removing items showing large DIF.  

Through simulation, future studies can explore the power and Type-I error of the 
likelihood ratio test at the item level and of the Wald’s 2χ  square test at the option level. 
The design factors can include the effect size (odds ratio), sample size, number of options 
within an item, number of options that are DOF within an item, as well as the different 
combination of types of DOF (non-uniform, uniform and non-DOF) within an item. 

In closing, we believe that the terminologies and analytical procedures laid out in this 
paper streamline and simplifies the investigation of differential responding between 
groups. With these new developments, we hope to facilitate more empirical studies of 
DOF and enhance in-depth understanding of item responding. 
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Appendix: Methods used for detecting differential options functioning 
during 1980s–2010s 

Paper/Report Obd % Log linear STD IRT 
Odds 
ratio LCA BLR MLR 

Veal and Foreman 
(1983) 

•        

Marshall (1983)  •       
Schmitt and 
Bleistein (1987) 

  •      

Green et al. (1989)  •       
Schmitt and 
Droans (1990) 

  •      

Westers and 
Kelderman (1991) 

     •   

Dorans et al. 
(1992) 

  •      

Thissen et al. 
(1993) 

   •     

Bolt et al. (2001)    •     
Barton and Huynh 
(2003) 

 •       

Bank (2006)  •       
Middleton and 
Laitusis (2007) 

  •      

Abedi et al. (2008)     •  •  
Penfield (2008)    • •    
Bank (2009)  •   •    
Kato et al. (2009)        • 
Penfield (2010)    • •    
Suh and Bolt 
(2011) 

   •     

Note: Obd %: Observed proportion; STD: standardisation; LCA: latent class 
analysis; BLR: binary logistic regression; MLR: multinomial logistic 




