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Abstract: Here, a modified particle swarm optimisation (MPSO)  
algorithm with varying swarm size for constrained optimisation problem is 
proposed. In this MPSO, a life time is assigned to each particle at the time of 
generation depending on its fitness. After completion of a generation, if no 
movement is made by the particle, its age is increased by unity. When age of a 
particle exceeds the lifetime, it is discarded from the swarm. Diversity  
in the swarm is maintained using information entropy theory. A fuzzy 
possibility/necessity-based fitness evolution is proposed to deal with fuzzy 
optimisation problems using this MPSO. Efficiency of the algorithm is tested 
against a list of crisp valued standard benchmark nonlinear test functions. This 
algorithm is used to solve a production inventory model with fuzzy costs, 
where lifetime of the product is random in nature. At the beginning of planning 
horizon price discount is offered to the customers for few cycles to boost the 
demand. Demand also depends on stock and selling price. The model is 
illustrated with numerical examples and some sensitivity analyses have been 
made. 
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1 Introduction 

The particle swarm optimisation (PSO) is a exhaustive search algorithm based on the 
motion of a flock of birds searching for food. A PSO starts with a set of potential 
solutions which is called swarm of the decision-making problem under consideration. 
Individual solutions are called particles and food is analogous to optimal solution. Since 
the introduction of the PSO, it is modified and the process is still going on. Here, this 
algorithm is modified with the introduction of life-time for each particle of a swarm at the 
time of their birth and it is done depending on their fitness. After completion of a 
generation, if no movement is made by a particle, its age is increased by unity. It is 
discarded from the swarm when age exceeds its life-time. At the time of generation of 
initial swarm, diversity in the swarm is maintained using information entropy theory. 
Diversity in the swarm is checked after a fixed number of generations, called period. 
After each period, swarm size may change depending on the diversity of the swarm. If 
diversity level drops below the fixed threshold, some new (child) particles are included in 
the swarm. Child particles are obtained using fuzzy life-time-based crossover and 
mutation operations on the particles of the swarm. Similarly, if the diversity exceeds a 
predefined upper limit, some particles are discarded. In the algorithm, crossover 
probability of a pair of parents is a function of their age-type (young, middle-aged, old, 
etc.) and is obtained using a fuzzy rule-base and possibility theory (cf., Appendix A). 
Inertia weight (w) and probability of mutation (pm) are initially taken very high and 
gradually decreases to a certain limit with iteration using a particular law [cf., Section 4.1 
(h)]. Due to these improvements, this algorithm [called modified PSO i.e., modified 
particle swarm optimisation (MPSO)] has more global search ability at the beginning of 
the run and has more local search ability near the end of the run. Performance of this 
algorithm is tested against a set of well established benchmark nonlinear test functions 
(TFs) of which local and global extrema are known. These TFs (cf., Appendix C) and 
their global/local optima obtained by the proposed MPSO are presented. This algorithm 
is used to find optimal decision of a production inventory model with stock and price 
discounted promotional demand in a random planning horizon. 

In this paper, a production inventory model of an item is developed, where lifetime of 
the product is assumed as random in nature and follows normal distribution with known 
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mean and standard deviation. It is also assumed that producer offers a price discount 
period to his customers in few cycles at the beginning of the planning horizon. During 
these period, demand increases in each cycle depending on the discount rate. Demand 
also depends on stock and selling price. After withdrawals of price discount period, 
demand depends on stock and price for the rest of the cycles. There is only one stochastic 
constraint – sum of the production cycle length is less than the length of random planning 
horizon. Models are formulated for both the crisp and fuzzy inventory costs. For crisp 
inventory parameters, total profit under the above mentioned constraint is maximised 
using the proposed MPSO to take optimal decisions. When some inventory parameters 
are fuzzy in nature, total profit through out the system is fuzzy in nature too. In this case, 
optimal decisions are made using the proposed MPSO with fuzzy objective function. 
Again, the model is also solved by another soft computing technique i.e., genetic 
algorithm (GA) (proposed by Guchhait et al., 2010). Obtained results with these two 
techniques are compared and presented. The models are illustrated with numerical 
examples and some sensitivity analyses have been made. 

2 Literature review 

The PSO algorithm has been introduced by Kennedy and Eberhart (1995) and is inspired 
by the emergent motion of a flock of birds searching for food. It is not only a recently 
invented high performance optimiser that is easy to understand and implement but, it also 
requires little computational bookkeeping and generally only a few lines of code 
(Boeringer and Werner, 2004). Since its introduction, PSO has seen many improvements 
and applications. Like other heuristics, most of the improvements on PSO are directed 
towards improving the convergence and increasing the diversity of the swarm. A brief 
discussion on its improvement in different directions and applications are given in 
Engelbrecht (2005). Some researchers tried to improve the performance of PSO by 
variable parameters (Shi and Eberhart, 1998; Zheng et al., 2003; Ratnaweera et al., 2004), 
some other change the updating equation (Ueno et al., 2005), or adapted operators of the 
GA (Michalewicz, 1992) or evolutionary strategy (ES) such as crossover, mutation, and 
sharing (Shi et al., 2005). Similar to other heuristics, PSO also has the problem of 
converging to undesired local optima because of the diversity of swarm decreasing in 
latter evolutionary periods and excessive combination with other evolutionary methods 
may weaken the powerful advantages of PSO. Chen and Zhao (2009) proposed a PSO 
that uses an adaptive variable swarm size method. In their work, the setting generation is 
divided into several equal periods; each period is called a ‘ladder’ (a fixed number of 
generations). This heuristic algorithm is developed with periodic partial increasing or 
declining of individuals according to diversities in the end of every ladder. Also, in each 
ladder, the current swarm maintains the same size and the diversity are estimated only at 
the end of this ladder. If the current diversity is larger than the threshold, the swarm size 
will be decreased and particles with small score in the ladder will be removed, if the 
current diversity values is smaller than the threshold, some new individuals produced by 
the crossover operator will appended to the swarm, otherwise, the swarm size is 
maintained in current level. So, the swarm size of the ladder is determined by the 
diversity of the swarm in the terminal of their front ladder (previous ladder). 

Now-a-days, it is found (in the subcontinent countries) that some manufacturers offer 
price discount in the form of putting additional unit(s) in every pack of that item. This 
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process of boosting a product is commonly practiced by the manufacturer especially 
when a product is newly launched in the market. Pal et al. (2009) developed an EPQ 
model incorporating price discounted promotional demand in a fuzzy planning horizon. 
They assume that producer offers price discount in every production cycle for some time, 
but ignore the effect of product availability in stimulating demand, though this effect is 
well established (Chung et al., 2000; Maiti and Maiti, 2006). Liang and Zhou (2011) 
published a two-warehouse inventory model for deteriorating items under conditionally 
permissible delay in payment. Recently, Molamohamadi et. al. (2014) presented a review 
article of inventory models under trade credit which really helps the young researchers in 
this direction. 

Production-inventory/inventory models are normally developed under the common 
assumption that product lifetime is infinite and models are developed under infinite 
planning horizon (Abad, 2000; Sarkar et. al., 2011; Guchhait et. al., 2010, 2013; De and 
Sana, 2013; De et. al., 2014). According to this assumption, product specification remains 
unchanged for ever. But, in reality it is observed that rapid development of technology 
leads to rapid change in product specifications with new features, new packets and name. 
Naturally, lifetime of a product is finite and normally it is imprecise (stochastic or fuzzy) 
in nature. In the literature, there are number of papers with this assumption of stochastic 
parameters (Gurnani, 1983; Moon and Yun, 1993; Roy et al., 2007). In fact estimation of 
stochastic parameters is made on sufficient amount of past data. On the other hand, 
estimation of fuzzy parameters is done by expert's opinion. So when past data is 
insufficient (especially for the newly lunched products) one has to depend on fuzzy 
parameters. But, only few number of production inventory models have been developed 
incorporating this realistic feature (Taleizadeh et. al., 2013; Guchhait et. al., 2012; 
Chakraborty et. al., 2013; De and Sana, 2013). Accordingly, the problem is developed 
with fuzzy parameters. 

Production cost of a manufacturing system mainly depends on the cost of raw 
materials and labour. Normally, raw material costs are imprecise in nature. In the existing 
literature of production/inventory control problems, labour cost is usually assumed as 
constant. However, in many realistic situations, because of the firms and employees 
perform the same task repeatedly; they learn how to perform rapidly. Therefore, 
processing cost of per unit product decreases to a certain limit in every cycle. At the same 
time, part of ordering cost may also decreases to a certain limit in every cycle. This 
phenomenon is known as the ‘learning effect’, in the literature. Although, different types 
of learning effects have been studied in various areas (Kuo and Yang, 2006), it has rarely 
been studied in the context of inventory control problems (Pal et al., 2009). 

3 Mathematical prerequisite 

The following notations and assumptions are used in developing the model. 

• Notations 
T length of one cycle 
K production rate 
Qi maximum inventory level in ith cycle 
ch holding cost per unit in $ 
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qi(t) inventory level at any time t in ith cycle 

Z total profit from N cycles 

α probability level for the stochastic constraint on the planning horizon. 

• Assumptions 

1 Inventory system involves only one item. 

2 The time horizon H is random in nature and follows normal distribution with 
known mean mH and standard deviation σH and h is real planning horizon such 
that P(H ≤ 0) is negligible. 

3 The time horizon accommodates N full cycles, i.e., NT ≤ h. 

4 Price discount is offered to the customers in the first M cycles. 

5 Production cost per unit in ith cycle cpi = cr + Li, where cr is raw material cost and 
Li is labour cost. Li decreases in each cycle due to learning effect and is of the 
form 10 1 / ,iL L L iβ= +  where L0, L1 and β1 are constants so chosen to best fit the 
labour cost function. 

6 Setup cost in ith cycle csi(in $) is partly constant and partly decreases in each cycle 
due to learning effect of the employees and is of the form: 10 1 /sic c c iβ= +  where 
c0, c1 and β1 are constants so chosen to best fit the set-ut cost function. 

7 Selling price in ith cycle spi is a mark-up of production cost cpi. m1 and m2 are 
mark-ups during price discount period and normal period respectively, i.e., 

1 1

2 2 1
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8 Demand of the item in ith cycle Di is of the form: 
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where A, B(0 < B < 1), C, and R(0 < R < 1) are four parameters so chosen to best 
fit the demand function. Qi is the maximum inventory level in ith cycle and 
displayed inventory has impact on demand up to level Q0. 
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9 Here, T, N, M, m1 and m2 are decision variables. 
In the development of the model, it is assumed that the life time of the product, 

ˆ ,H  is random in nature and this is taken as planning horizon of the model. ‘N’ 
cycles are completed during the real time horizon ‘h’, here length of each cycle is 
‘T’ and then NT <= h clearly. At the beginning of ith cycle, i.e., at t = (i − 1)T, 
item is produced at a rate ‘K’ and inventory is built up at a rate K − Di(t). When t 
= (i − 1)T + t0i, inventory level reaches Q0. Production stopped when t = (i − 1)T 
+ t1i and at that time inventory level reaches Qi. After that, inventory is depleted 
due to the demand rate Di(t) and its level reaches Q0 again at t = (i − 1)T + t2i. 
Finally, inventory vanishes at t = iT and production for next cycle starts. 
Inventory levels over time are depicted in Figures 1 and 2. 

Figure 1 Inventory levels in ith cycles when Q0 < Qi 

 

Figure 2 Inventory levels in ith cycle when Q0 > Qi 

 

3.1 Formulation for first M cycles 

Depending upon the values of Q0 and Qi two cases may arise. 

Case 1 (Q0 <= Qi): according to the above assumptions, instantaneous state qi(t) of the 
item in ith (i <= M)cycle ((i − 1)T <= t <= iT) is given by 
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where qi((i – 1)T = 0, qi((i – 1)T + t0i) = Q1, qi((i – 1)T + t1i =Qi, qi((i – 1)T + t2i = Q0, 
qi(iT) = 0. 

Solving the equation (1) and using the boundary conditions we have 
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So, the holding cost for ith cycle, chHOCi = ch (H1 + H2 + H3 + H4), where 
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Case2 (Q0 > Qi): in this case, instantaneous state qi(t) of the item in ith (i <= M) cycle  
((i – 1)T <= t< = iT) is given by 
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where qi((i – 1)T) = 0, qi ((i – 1)T + t1i) = Qi, qi(iT) = 0. 
Solving the equation (10) and using the above boundary conditions we have 
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So, the holding cost for ith cycle, chHOCi = ch(H1 + H2), where 
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Can be obtained easily as in Case 1 of Section 3.1 
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3.2 Formulation for last N-M cycles 

Depending on the values of Q0 and Qi, again two cases may arises. 

Case 1 (Q0 <= Qi): according to the above assumptions, instantaneous state qi(t) of the 
item in ith (i > M) cycle ((i − 1)T = t = iT) is given by 
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where qi((i – 1)T = 0, qi((i – 1)T + t0i) = Q0, qi((i – 1)T + t1i) = Qi, qi((i – 1)T + t2i) = Q0, 
qi(iT) = 0. 

Solving the equation (13) and using the boundary conditions we have, 
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So, the holding cost for ith cycle, chHOCi = ch(H1 + H2 + H3 + H4), where 
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Can be obtained easily as in Case 1 of Section 3.1 



   

 

   

   
 

   

   

 

   

    A fuzzy lifetime-based PSO with varying swarm size 77    
 

    
 
 

   

   
 

   

   

 

   

       
 

Case 2 (Q0 > Qi): in this case, instantaneous state qi(t) of the item in ith (i > M) cycle  
((i –1)T <= t< = iT) is given by 
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2 1

2 1

1
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1
2

( 1) ( 1)
( )  

( 1)

m m MT
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m cdq t

dt A Bq CR i T t t iT
m c

−

−

⎧ + −
− − ≤ ≤ − +⎪
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⎩

 (18) 

where qi((i – 1)T = 0, qi((i – 1)T + t1i) = Qi, qi(iT) = 0. 
Solving the equation (18) and using the above boundary conditions we have 
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So, the holding cost for ith cycle, chHOCi = ch(H1 + H2), where 
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Can be obtained easily as in Case 1 of Section 3.1 

3.3 Formulation of objective function 

Incorporating all the cases, the total profit from N cycles can be represented by 

– –Z SP PC HOC OC= −  (21) 
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3.4 Model with crisp objective 

When all the inventory parameters are crisp, then the problem reduces to determine T, N, 
M, m1 and m2 to 

( )
Maximize

ˆsubject to

Z

P NT H α

⎫⎪
⎬

≤ > ⎪⎭
 (22) 

Using the optimisation process with stochastic constraints by Charnes and Cooper (1959) 
(cf., Appendix B), the above problem reduces to determine T, N, M, m1 and m2 to 

2 2

Maximize

1subject to , where
2

ε
t

H H

Z

NT m εσ e dt
π

α −

−∞

⎫
⎪
⎬≤ − = ⎪
⎭

∫
 (23) 

For different values of ‘α’, values of ‘ε’ are taken from standard normal distribution table 
and the problem is solved using a modified heuristic technique MPSO (cf., §4). 

3.5 Model with fuzzy objective 

Here, it is assumed that the holding cost ‘ch’, the setup cost coefficients ‘c0’ and ‘c1’ as 
triangular fuzzy number (TFN), 1 2 3( , , ),h h h hc c c c=�  0 01 02 03( , , ),c c c c=�  1 11 12 13( , , )c c c c=�  
respectively. Then, the total holding cost HOC becomes a TFN, HOCF = (HF1, HF2, HF3) 
and the total setup cost OC also becomes a TFN, OCF = (OCF1, OCF2, OCF3) where 

1
0

1 1

and , 1, 2, 3.
N N

j
Fj hj i Fj j

i i

c
H c HOC OC c j

iβ= =

⎧ ⎫= = + =⎨ ⎬
⎩ ⎭∑ ∑  

Hence, the total profit Z also becomes a TFN, 1 2 3( , , )Z Z Z Z=�  where Z1 = SP – PC – 
OCF3 – HF3, Z2 = SP – PC – OCF2 – HF2 and Z3 = SP – PC – OCF1 – HF1. So, the problem 
reduces to 

Determine T, N, M, m1 and m2 to  

Maximize
ˆsubject to ( )

Z

P NT H α

⎫⎪
⎬

≤ > ⎪⎭

�
 (24) 

Using the optimisation process with stochastic constraints by Charnes and Cooper (1959) 
(cf., Appendix B), the above problem reduces to 

Determine T, N, M, m1 and m2 to  

2 /2
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1subject to , where
2

ε
t

H H

Z

NT m εσ e dt
π

α −

−∞

⎫
⎪⎪
⎬

≤ − = ⎪
⎪⎭

∫

�

 (25) 

This problem is solved using a modified MPSO algorithm (which is discussed below in 
Section 4) for fuzzy objective. 
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4 Modified particle swarm optimisation 

PSOs are exhaustive search algorithms based on the emergent motion of a flock of birds 
searching for food (Eberhart and Kennedy, 1995; Kennedy and Eberhart, 1995) and have 
been extensively used/modified to solve complex decision-making problems in different 
field of science and technology (Engelbrecht, 2005; Esmin et al., 2002; Feng, 2005; 
Liang et al., 2006). A PSO normally starts with a set of potential solutions (called swarm) 
of the decision-making problem under consideration. Individual solutions are called 
particles and food is analogous to optimal solution. In simple terms the particles are 
flown through a multi-dimensional search space, where the position of each particle is 
adjusted according to its own experience and that of its neighbours. Each particle ‘i’ has a 
position vector Xi(t), a velocity vector Vi(t), the position at which the best fitness (pbesti) 
encountered by the particle so far, and the best position of all particles (gbest) in current 
generation t. In generation (t + 1), the position and velocity of the particle are changed to 
Xi(t + 1) and Vi(t + 1) using following rules: 

( ) ( )1 1 2 2( 1) ( ) ( ) ( ) ( ) ( )i i pbesti i gbesti iV t wV t c r X t X t c r X t X t+ = + − + −  (26) 

( 1) ( ) ( 1)i i iX t X t V t+ = + +  (27) 

The parameters c1 and c2 are set to constant value, which are normally taken as 2, r1 and 
r2 are two random values, uniformly distributed in [0, 1], w(0 < w < 1) is inertia weight 
which controls the influence of previous velocity on the new velocity. Global search 
performance is good with large inertial weight while a small inertia weight facilitates a 
local search. As a result, in the beginning of searching, w is set to high value and 
decreasing to a lower limit at the end of evolutionary processing. Due to these 
improvements/changes, PSO have more global search ability at the beginning of the run 
and have more local search ability near the end of the run. Better performance is derived 
in many function optimisation problems (Chen and Zhao, 2009). The second part in 
equation (26) is called cognition character and the third part is social character of 
particles. The position of each particle is updated every generation. When a particle 
discovers a pattern that is better than any that it has found previously, it will track the 
better position by updating equations (26) and (27). 

Similar to other heuristics, in PSO, poor parameter settings usually leads to several 
problems such as premature convergence. PSO also has the problem of converging to 
undesired local optima because of the diversity of swarm decreasing in latter periodic of 
evolutionary. Again excessive combination with other evolutionary methods may weaken 
the powerful advantages of PSO. Overcoming these drawbacks, Chen and Zhao (2009) 
presented a PSO algorithm that uses an adaptive variable swarm size and periodic partial 
increasing or declining of particles in the form of ladder function. The aim was to 
enhance the overall performance of PSO. Their algorithm adjusts the swarm size 
automatically according to the value of diversity of the swarm in ultimate time of current 
ladder. For increasing the particles they use simple crossover and mutation operation of 
GA and for decreasing, particles with lower fitness are removed. 

In this paper, the PSO algorithm is modified (in this case it is called as modified PSO 
i.e., MPSO), where at the time of generation of each particle, a lifetime is assigned 
depending upon its fitness. Fitness of a particle depends on the objective function value 
due to it. After completion of a generation (iteration), if no movement is made by the 
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particle, its age is increased by unity. When age exceeds lifetime, particles are discarded 
from the swarm at the beginning of every iteration. It avoids the local convergence of the 
algorithm. At the time of generation of initial swarm, diversity in the swarm is 
maintained using information entropy theory. Every time a new particle Xi is generated, 
the entropy between this one and previously generated individuals is calculated. If this 
information quantity is higher than a threshold ET, fixed at the beginning, Xi is included 
in the swarm otherwise Xi is again generated until diversity exceeds the threshold ET. 
This method induces a good distribution of initial swarm. Diversity in the swarm is also 
checked after a fixed number of generations called period. After each period, swarm size 
may change depending on the diversity of the swarm. If diversity level drops threshold 
level ET, some new (child) particles are included in the swarm. Child particles are 
obtained using fuzzy lifetime-based crossover and mutation operations on the swarm. 
Similarly, if the diversity exceeds predefined upper limit, some particles are discarded. 
For crossover operation particles are classified into young, middle age and old (in fuzzy 
sense) according to their age and lifetime. Following comparison of fuzzy numbers using 
possibility theory (cf., Appendix A), here crossover probability is measured as a function 
of parent’s age interval (a fuzzy rule base on parents age limit is also used for this 
purpose). In this MPSO, a subset of better child particles are included with the parent 
swarm for next period and maximum size of this subset is a percentage of the size of its 
parent set. To control memory overflow at the runtime of the algorithm, an upper limit of 
swarm size is imposed (Maxsize). Similarly, a lower limit (Minsize) of swarm size is 
maintained. Algorithm terminates when difference between maximum fitness (Maxfit) 
and average fitness (Avgfit) of the swarm becomes negligible (less than a predefined 
small value ε). Here inertia weight (w) and probability of mutation (pm) are initially very 
high and follows a decreasing law in function of the generation number. General structure 
of this MPSO for a maximization problem is presented below. The same algorithm can be 
used for minimisation problem, by negating the objective value or changing the 
inequalities of step 22 and step 23 of the algorithm. 

In the algorithm Bl and Br are lower and upper limit vector respectively of variation of 
search space. Check constraint (Xi) checks whether the solution Xi satisfies the constraints 
of the problem or not. If Xi satisfies the constraints of the problem, it returns a value 1 
otherwise return 0. 

Proposed MPSO algorithm 

1 Initialize period length T, ET, Maxsize, Minsize, ε, ω and pm 
2 Set iteration counter t = 1 and randomly generate initial swarm S(t), where diversity in 

the swarm is maintained using entropy originating from information theory. 
3 Find lifetime and set velocity Vi(t) of each particles Xi(t) of initial swarm S(t). 
4 Do 
5  For j = 1: T do 
6   For i = 1: pop_size do 
7     Vi(t + 1) = ωVi(t) + c1r1(Xpbesti(t) − Xi(t)) + c2r2(Xgbest(t) − Xi(t)) 
8     If (Vi(t + 1) > Vmax) then set Vi(t + 1) = Vmax 
9     If (Vi(t + 1) < −Vmax) then set Vi(t + 1) = −Vmax 
10     Xi(t + 1) = Xi(t) + Vi(t + 1) 
11     If (Xi(t + 1) > Br) then set Xi(t + 1) = Br 
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12     If (Xi(t + 1) < Bl) then set Xi(t + 1) = Bl 
13     If check_constraint (Xi(t + 1)) = 0 
14      Increase age of Xi(t) by 1 
15      If age of Xi(t) > life_time 
16       Remove Xi(t) from swarm. 
17      else 
18       Set Xi(t + 1) = Xi(t), Vi(t + 1) = Vi(t) 
19      End If 
20     Else 
21      Set age of Xi(t + 1) = 0 
22      if f(Xi(t + 1)) > f(Xpbesti) then set Xpbesti = Xi(t + 1) 
23      if f(Xi(t + 1)) > f(Xgbest) then set Xgbest = Xi(t + 1) 
24     End If 
25    End For 
26    Set t = t + 1 
27  End For 
28  Set Div = diversity of S(t). 
29  If Div < ET 
30   Include child particles in S(t) using fuzzy crossover and mutation such that its size 

does not exceeds Maxsize. 
31  End If 
32  If Div > ET 
33   Remove some particles from S(t) using q-tournament method Chen and Zhao 

(2009) such that its size does not drops Minsize. 
34  End If 
35  Decrease value of w and pm. 
36  Set Maxfit = Maximum fitness in S(t) and Avgfit = Average fitness of S(t). 
37 While (Maxfit – Avgfit ≥ α) 
38 Output: Best particle of S(t) 
39 End Algorithm 

Algorithm for inclusion of particles into S(t): 

1 For each pair of particles in S(t) do 
2 Determine probability of crossover cp�  or the selected pair of parents using fuzzy  

rule-base and possibility theory. 
3  Perform crossover with probability .cp�  

4  If crossover occurs and child particles satisfy the constraints of the problem store 
them into offspring set. 

5 End For 
6 For each particles Xi(t) in S(t) do 
7  Perform mutation with probability pm 
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8  If mutation occurs and child particle satisfies the constraints of the problem store 
them into offspring set. 

9 End For 
10 Rank the particles of offspring set using q-tournament method (Chen and Zhao, 2009). 
11 Select a percent of better offsprings from the offspring set and insert into S(t), such that 

maximum size of S(t) does not exceed Maxsize. 
12 Remove all offsprings from the offspring set. 
13 End Algorithm 

4.1 Different steps of MPSO algorithm 

a Representation of particles: a ‘n dimensional real vector’, Xi = (xi1, xi2,…, xin), is 
used to represent ith solution, where xi1, xi2,…, xin represent n decision variables of 
the decision-making problem under consideration. Xi is called ith chromosome and xij 
is called jth gene of ith chromosome. 

b Initialisation: N solutions Xi = (xi1, xi2,…,xin), i = 1, 2,…,N are randomly generated 
by random number generator within the boundaries of each variable [Bjl, Bjr],  
j = 1, 2,…,n. Initialise (S(1)) sub-function is used for this purpose. 

c Constraint checking: for constrained optimisation problems, at the time of generation 
of each individuals Xi of S(1), constraints are checked using a separate sub-function 
check_constraint(Xi), which returns 1 if Xi satisfies the constraints otherwise returns 
0. If check_constraint(Xi) = 1, then Xi is included in S(1) otherwise Xi is again 
generated and it continues until constraints are satisfied. 

d Diversity preservation: at the time of generation of S(1) diversity is maintained using 
entropy originating from information theory. Following steps are used for this 
purpose. 
1 Probability, prjk, that the value of the ith variable of the jth particle is different 

from the ith variable of the kth particle is calculated using the formula 

1 ji ki
jk

ir il

x x
pr

B B
−

= −
−

 

where [Bil, Bir] is the variation domain of the ith variable.  
2 Entropy of the ith variable, Ei(M), i = 1, 2,…,n is calculated using the formula. 

1

1 1

( ) log
M M

i jk jk
j k j

E M pr pr
−

= = +

= −∑ ∑  

where M is the size of the swarm. 
3 Average entropy of the current swarm is calculated by the formula 

1

1

( ) ( )
n

in
i

E M E M
=

= ∑  
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Incorporating the above three steps a separate sub-function check_diversity(Xi) is 
developed. Every time a new particle Xi is generated, the entropy between this 
one and previously generated individuals is calculated. If this information 
quantity is higher than a threshold, ET, fixed at the beginning, Xi is included in the 
swarm otherwise Xi is again generated until diversity exceeds the threshold, ET. 
This method induces a good distribution of initial swarm. 

e Determination of fitness and lifetime: fitness Z(Xi) of the particle Xi is determined 
using the following formula: 

( ) ( )
( )

 for maximization problem, and
          for minimizationproblem

i i

i

Z X f X
L f X

=

= −
 (28) 

where f(x) is objective function and L is a sufficiently large positive real to make 
fitness positive. Following Michalewicz (1992), at the time of birth life-time of Xi is 
computed using the following formula: 

( ) ( ) ( )( )Minfit
If Avgfit , lifetime Minlt

Avgfit Minfit
i

i i
K Z X

Z X X
−

≥ = +
−

 

( ) ( ) ( )( )AvgfitMinlt MaxltIf Avgfit , lifetime
2 Maxfit Avgfit

i
i i

K Z X
Z X X

−+
< = +

−
 

where Maxlt and Minlt are maximum and minimum allowed lifetime of a particle,  
K = (Maxlt − Minlt)/2. Maxfit, Avgfit, Minfit represent the best, average and worst 
fitness of the current population. To optimise different TFs it is assumed that  
Maxlt = 7 and Minlt = 1, N = 10. According to the age, a particle can belongs to any 
one of age intervals – young, middle-age or old, whose membership functions are 
presented in Figure 3. 

f Crossover: 
• Determination of probability of crossover ( ) :cp�  probability of crossover ,cp�  

for a pair of parents (Xi, Xj) is determined as below: 
1 At first age intervals (young, middle-age, old) of Xi and Xj are determined by 

making possibility measure of fuzzy numbers – young, middle-age, old with 
respect to their age using Lemma 4 (cf., Appendix A). If age of Xi is ai, then 
possibility measures of fuzzy numbers young, middle-age and old with 
respect to ai are calculated. Then age interval having maximum possibility 
measure is taken as age interval of Xi. Similarly, age interval of Xj is 
determined, 

2 After determination of age intervals of the parents their crossover probability 
( )cp�  is determined as a linguistic variable (low, medium or high) using a 
fuzzy rule-base as presented in Table 1. Membership function of these 
linguistic variables is presented in Figure 4. 
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3 Crossover process: for each pair of parent solutions Xi, Xj a random number 
c is generated from the range [0, 1] and if nes( )cc p β< >�  (cf., Lemma 1 in 
Appendix A), crossover operation is made on Xi, Xj, where β (0 < β < 1) is a 
predefined necessity level. For the proposed model it is assumed that β = 0.5. 
To made crossover operation on each pair of coupled solutions Xi, Xj a 
random number c1 is generated from the range [0, 1] and their offsprings Y1 
and Y2 are determined by the formula: 

( ) ( )1 1 1 2 1 11   ,  1  i j j iY c X c X Y c X c X= + − = + −  

For constrained optimisation problems, if a child solution satisfies the constraints of 
the problem then it is included in the offspring set otherwise it is not included in the 
offspring set. 

g Mutation: 
1 Selection for mutation: for each offspring generate a random number ‘r’ from 

the range [0, 1]. 
If r < pm then the solution is taken for mutation, where pm is the probability of 
mutation. 

2 Mutation process: random mutation process is used for this purpose. According 
to this process a randomly selected variable of the solution is replaced by its 
regenerated value with its search boundary. So to mutate a solution X = (x1, x2,…, xn) 
a random integer i in the range [1, n] has to be selected. Then replace xi by randomly 
generated value within the boundary [Bil, Bir] of ith variable of X. New solution (if 
satisfies constraints of the problem) included in the offspring set. Constraint 
checking of a child solution Ci is made using check_constraint(Ci) function. 

h Reduction process of ω and pm: let ω(0) and pm(0) is the initial value of ω and pm 
respectively. Then the value of w and pm in Tth generation w(T) and pm(T) are 
calculated by the following formulae: 

ω(0) = ω (0)exp(–T/α1) and pm(T) = pm(0) exp(−T/α2), where α1 is calculated so that 
the final value of ω is small (0.2 in our case). So 

1
(0)Maxgen log ,

0.2
ωα ⎡ ⎤= ⎢ ⎥⎣ ⎦

 

where Maxgen is the expected number of generations that the GA can run for 
convergence. Similarly, α2 is calculated so that the final value of pm is small enough 
(10–2 in our case). So 

1 2

(0)Maxgen log
10

mpα
−

⎡ ⎤= ⎢ ⎥⎣ ⎦
 

i Inclusion of particles in S(t): 
• Following Chen and Zhao (2009) maximum number of offsprings to be included 

in S(t) is NI = N(t) × λ × Div(S(t)), where N(t) represents the current size of S(t), 
Div(S(t)) is the diversity of S(t) and λ is adding factor. The common value of λ 
belongs to the interval [0.2, 0.3]. 
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• Particles in the offspring set are at first ranked using q-tournament process 
(Chen and Zhao, 2009). 

• Particles in the offspring set are arranged in descending order of their rank. 
• First NI particles are included in S(t). After inclusion, excess particles are 

removed if the number of particles in S(t) exceeds Maxsize. 

(j) Deletion of particles from S(t): 
• Again, following Chen and Zhao (2009), maximum number of offsprings to be 

deleted from S(t) is ND = N(t) × η × Div(S(t)), where N(t) is the current size of 
S(t), Div(S(t)) is the diversity of S(t) and η is deletion factor, whose value is less 
than λ. The common value belongs to the interval [0.1, 0.2]. 

• Particles in S(t) are at first ranked using the q-tournament process (Chen and 
Zhao, 2009). 

• S(t) is arranged in descending order of rank of particles. 
• Last min{ND, O(S(t))−Minsize} particles are deleted from S(t), so that after 

deletion, the number of particles in S(t) does not drops below Minsize. 

k Termination condition: algorithm terminates when difference between maximum 
fitness (Maxfit) of particle, i.e., fitness of the best solution of the swarm and average 
fitness (Avgfit) of the swarm becomes negligible. 

l Implementation: with the above function and values the algorithm is implemented 
using C-programming language in a personal computer consist of Intel 3.07 GHZ 
processor, 448 MB RAM and Microsoft Windows XP operating system.  

m Convergence of the MPSO algorithm: a set of TFs are used to test the efficiency of 
the proposed algorithm MPSO. It is observed that results obtained by MPSO for 
different TFs are equal to the global optimum in most of the cases and in other cases 
solutions are all most near to global optima. This implies that this algorithm can be 
used as decision-making tool for different constrained/unconstrained optimisation 
problems. 

Figure 3 Membership functions of age intervals 
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Figure 4 Membership functions of crossover probabilities 

 

Table 1 Fuzzy rule-base for crossover probability 

Parent 2 
Parent 1 

Young Middle-age Old 
Young Low Medium Low 
Middle-age Medium High Medium 
Old Low Medium Low 

4.2 MPSO for fuzzy objective function 

A general single-objective mathematical programming problem with fuzzy objective 
function can be written as: 

Maximize ( ,  ), subject to (X) 0, 1,  2, , ,if X ξ g i m≤ = …�  (29) 

where X = (x1, x2,…,xn) is a decision vector, ξ�  is a vector of fuzzy parameters, ( , )f X ξ� �  
is the return function and gi(X) are constraints. 

The above MPSO algorithm can be used to determine optimal decision of the above 
problem. To deal with such a problem at first a fuzzy goal ( )gF�  of the objective function 

( )f�  is determined using the above MPSO algorithm. Then to make decision of the  
fuzzy optimisation problem, possibility/necessity (optimistic/pessimistic sense) (cf., 
Appendix A) of the fuzzy objective ( )f�  with respect to the fuzzy goal ( )gF�  is taken as 
fitness of a particle (solution) of the swarm. The process is discussed below. Other 
functions and values are same as discussed above. 

• Determination of fuzzy goal: fuzzy goal gF� � of the fuzzy objective function 

( , )f X ξ� �  is considered as a linear fuzzy number (LFN) (Fg1, Fg2) and values of 
Fg1, Fg2 can be determined in different ways. Here the following formulae are 
proposed and are used for numerical illustrations for the fuzzy models. In the 
formula S denotes the feasible search space of the problem. 

( ) ( )1 2
0 0 0 0

0, 0 0, 0inf inf , supg g
x S ξ ξ x S ξ ξ

F f x ξ F spu f x ξ
∈ ∈ ∈ ∈

= =
� �
� �  

• Fitness evaluation: for optimistic decision maker (DM), 
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( )
( , ) gf X ξ

F∏ � �
�  

can be taken as fitness of a solution X and for pessimistic DM, ( , ) ( )gf X ξN F� � �  can 

be taken as fitness. If analytical form of membership function of ( , )f X ξ� �  
(obtained by the formula defined in equation (34) is a TFN (F1(X), F2(X), F3(X)), 
then Lemma 2 gives 

( ) 1 1
( , )

,g
f X ξ

F U E=∏ � �
�  

where U1 = F3(X) − Fg1 and E1 = F3(X) − F2(X) + Fg2 − Fg1. As MPSO search 
plays a role to maximise the fitness of the chromosomes in the swarm, so 
maximisation of 

( )
( , ) gf X ξ

F∏ � �
�  

implies maximisation of F2(X) (most feasible equivalent of ( , )f X ξ� �  and F3(X) 

(least feasible equivalent of ( , )f X ξ� �  together. Again, 

( )
( , )

1gf X ξ
F =∏ � �
�  

implies F2(x) ≥ Fg2, i.e., most feasible objective value achieves the highest level 
of profit goal (Fg2). Thus if DM is optimistic and allows some risk, he/she will 
find the fitness of a solution depending on the possibility measure. On the other 
hand, Lemma 3gives 2 2( , ) ( )  / ,gf X ξN F U E=� � �  where U2 = F2(X) − Fg1 and  

E2 = F2(X) − F1(X) + Fg2 − Fg1. So in this case maximisation of ( , ) ( )gf X ξN F� � �  

implies maximisation of F1(X) (worst possible equivalent of ( , )f X ξ� �  and F2(X) 

most feasible equivalent of ( , )f X ξ� �  together. ( , ) ( ) 1gf X ξN F =� � �  implies F1(X) ≥ 

Fg2, i.e., worst possible objective value achieves the highest level of profit goal 
(Fg2). If DM is pessimistic and does not allow any risk, he/she will determine the 
fitness of solution using necessity measure approach. Set Z(X) as fitness of X. 

5 Numerical illustration 

5.1 Testing of algorithm 

Here, different models are solved using the proposed MPSO algorithm. Different 
parameter values of the MPSO algorithm used for this purpose are given below: 

Number of variables in a solution n = 5. A five dimensional real vector X = (x1, x2, x3, 
x4, x5) is used to represent a solution. In which x1 represents T, x2 represents N, x3 
represents M, x4 represents m1 and x5 represents m2. Integral parts of x2 and x3 are taken as 
values of N and M respectively. Minimum swarm size Minsize = 10, Maximum swarm 
size Maxsize = 100. Initial value of probability of mutation pm(0) = 0.9 and inertia weight 
w(0) = 0.9. Lower limit of inertia weight=0.2. Value of ‘q’ in q-tournament method is 5. 
Expected value of maximum number of generation to converge the MPSO, Maxgen = 
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200. MPSO algorithm is run for the TFs (cf., Appendix C) using different seeds of 
random number generators for 40 times each and number of success of finding optimal 
solutions for each function are noted. If optimal solution is found in a run of the heuristic 
algorithm using a seed, we say that the run is successful. % of successful runs for 
different TFs due to that technique is listed in Table 2. It is observed that the performance 
of MPSO is good enough. 
Table 2 Results of TFs following the proposed MPSO algorithm 

TF Results obtained Maximum iterations 
required for convergence 

% of success 
for 40 runs 

TF1 ES(3.1432, 3.1438) = −0.9998 164 96% 
TF2 MZ(2.2025, 1.5744) = −1.8004 180 92% 
TF3 F(1.0001, 0.9998) = 1.0002 159 98% 
TF4 F2(2.0481, 0.0001) = −205.8479 176 98% 
TF5 SH(x_1) = −186.7306 176 94% 
TF6 RC(x_2) = 0.39773 98 96% 
TF7 F2(1.0013, 0.9998) = 0.0 178 94% 
TF7 F4(0.9996, 0.9998, 0.9997, 0.9996) = 0.0 Does not converge for all 

runs 
90% 

TF8 BH(0.0000, 0.0001) = 0.0 125 98% 
TF9 F(0.5, 0.2499) = 0.25 102 98% 
TF10 Z3(0.0000, 0.0001, 0.0001) = 0.0 144 98% 

Notes: For TF-5, 18 global minima are x_1 = [(–0.8004,–1.4262), (–1.4252, –0.8003), 
(4.8584, –7.0835), (–7.0836, 4.8579), (–7.7083, –7.0835), (–7.0839, –7.7083), 
(5.4826, 4.8582), (4.8581, 5.4828), (–1.4254, –7.0839), (–7.0835, –1.4253), 
(4.8583, –0.8001), (–0.8005, 4.8583) (5.4827, –7.7082), (–7.7086, 5.4830),  
(–7.7085, –0.8001), (–0.8001, –7.7086), (5.4821, –1.4250), (–1.4252, 5.4823)].  
For TF–6, three global minima are x_2 = [(–3.1423, 12.2504), (3.1431, 2.2517), 
(9.4253, 2.2474)]. 

Figure 5 pm(0) vs. % of success (see online version for colours) 
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Figure 6 Threshold vs. % of success (see online version for colours) 

 

Performance of the proposed MPSO algorithm is improved by setting the appropriate 
values of the parameters of the algorithm against the above mentioned TFs (Here, TF-1 to 
TF-5 are taken). For different values of initial probability of mutation pm(0) and threshold 
ET, performance of the proposed heuristic algorithm for these TFs are evaluated and 
plotted graphically (cf., Figure 5 and Figure 6). Figure 5 and Figure 6 reflected that the % 
of success of the MPSO is good enough for pm(0) = 0.9 and ET = 0.12 taking reasonable 
number of iterations for convergence. This study is made to fix-up the values of pm(0) 
and ET for which optimum results can be found in most of the runs of the algorithm and 
numerical experiments of the proposed models are made with these values of pm(0) and 
ET. 

5.2 Numerical illustration of the proposed model 

5.2.1 Results of the model with crisp objective function 

The following parameter values are used to illustrate the model: 

0

0 1 1 0 1 2

2 

2,500, 1,000, 2,000, 0.25, 500, 0.7, 1.5,
0.5, 1.25, 0.90, 0.4, 30, 35, 0.5, 2.5,
20, 1 and upper limit of is 2.

r

H H

K Q A B C R c
L L c c γ
m σ m

α β β
= = = = = = =
= = = = = = = =
= =

 

As discussed earlier, to compare the results, the present crisp model (Section 3.4) is 
solved following the two algorithms, i.e., MPSO and GA (presented by Guchhait et al., 
2010). For the above parametric values, the optimum cycle length (T), the total number 
of cycles (N), the number of cycles for which price discount is offered (M), the mark-ups 
of selling price (m1 and m2) and the profit (Z) are obtained by both the methods and 
presented. Obtained results for different values of ‘α’ (degree of probability of satisfying 
the constraint on random planning horizon) are presented in Table 3. 
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Table 3 Results of crisp model obtained by MPSO and GA 

MPSO GA 

α T N M m1 m2 Z α T N M m1 m2 Z 

0.90 1.8715 10 6 1.6509 2 618.10  0.90 1.8675 10 6 1.6561 2 617.64 
0.91 1.8655 10 6 1.6516 2 615.23  0.91 1.8611 10 6 1.6546 2 614.27 
0.92 1.8595 10 6 1.6575 2 612.41  0.92 1.8567 10 6 1.6642 2 611.55 
0.93 1.8525 10 7 1.6807 2 609.25  0.93 1.8541 10 7 1.6723 2 608.26 
0.94 1.8445 10 7 1.6808 2 605.34  0.94 1.8421 10 7 1.6733 2 604.68 

As expected, profit decreases with increase of ‘α’. In fact, increase of ‘α’ decreases the 
effective length of planning horizon, which in turn decreases the profit. Also, it is 
observed that m1 increases with ‘α’ to keep the profit high. In fact, increase of m1 
decreases the demand which decreases the profit, but m1 directly increases the profit. As a 
result, though increase of m1 decreases demand, increase in profit due to increase in m1 
dominated decrease in profit due to decrease in demand. So, the resultant effect keeps the 
total profit high. Again, from this table it is observed that after the certain increasing 
value of ‘α’, the number of cycles for price discount is more than the previous one, which 
in turn decreases the profit also. Similar trends of the results are observed for both the 
algorithms, but, the profit obtained by MPSO is better than that of GA. Of course, these 
better results do not contribute much in real sense for the present set of parametric values 
of the model. The differences are in the decimal places. As our problem is to maximise 
the profit, so we can say that the proposed algorithm performed better compared to the 
GA. 
Table 4 Results of crisp model obtained by MPSO and GA 

MPSO GA 
R T N M m1 m2 Z R T N M m1 m2 Z 
0.71 1.8715 10 6 1.6580 2 613.99 0.71 1.8717 10 6 1.6572 2 613.03 
0.72 1.8715 10 6 1.6571 2 609.99 0.72 1.8716 10 6 1.6567 2 609.11 
0.73 1.8715 10 7 1.6806 2 605.72 0.73 1.8718 10 7 1.6630 2 604.87 
0.74 1.8715 10 7 1.6799 2 601.38 0.74 1.8716 10 7 1.6753 2 600.22 
0.75 1.8715 10 7 1.6796 2 596.75 0.75 1.8717 10 7 1.6649 2 595.02 

Again, for the above parameter values, results are also obtained by both the algorithms 
MPSO and GA for different values of ‘R’ and presented in Table 4. It is observed that the 
profit decreases with ‘R’. It happens because increase of ‘R’ decreases the effect of price 
discount on demand, i.e., demand decreases with the increase of ‘R’. As demand of the 
item decreases; the profit decreases automatically. It is also observed from the Table 4 
that, to keep the demand high (with the increase of ‘R’), either m1 decreases or M 
increases. Because, increasing demand reflects more profit. As the proposed model is to 
maximise the profit so, all these observations agree with reality. Here also, it is observed 
that the profit obtained by MPSO is more than that of GA. 
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5.2.2 Results of the model with fuzzy objective function 

To illustrate the fuzzy model, the setup cost coefficients 0 1,c c� �  and the holding  
cost hc�  are considered as TFNs, i.e., 0 (30, 35, 40),c =�  1 (35, 40, 45)c =�  and 

(0.45, 0.5, 0.55)hc =�  respectively. Other parameter values are same as in the crisp 
model. From the previous results (i.e., the results of crisp model as well as TFs) it can be 
concluded that the MPSO algorithm performed better compared to the other. For this 
reason the fuzzy model is solved using only MPSO algorithm. For the assumed parameter 
values, calculated value of Fg1 = 447 and Fg2 = 650.16. The results are obtained by 
MPSO algorithm for the fuzzy model (25) using both the measure of fuzzy number (i.e., 
possibility and necessity measures) and presented in Tables 5 and 6 respectively. It is 
observed from these tables (Tables 5 and 6) that maximum possible profit due to 
possibility measure (Z3 = 649.25) is more than that of the maximum profit due to 
necessity measure (Z3 = 647.65). But, there is some risk in possibility measure approach. 
Because, in that case minimum assured profit (Z1 = 444.01) is less than that of the 
obtained following necessity measure (Z1 = 445.29). It happens because possibility 
measure approach is followed by optimistic DMs. Using this approach actually Z2 and Z3 
are optimised [cf., §4.1(2)]. On the other hand necessity measure approach is followed by 
pessimistic DMs. Using this approach, actually Z1 and Z2 are optimised [cf., §4.1(2)]. As 
a result, Z3 in necessity measure approach may be less compared to the value of Z3 in 
possibility measure approach. In this case, minimum possible profit (i.e., Z1 in necessity 
measure) is optimised, so DM is free from risk. 
Table 5 Results of fuzzy model following possibility measure for fitness 

Algorithm T N M m1 m2 Z1 Z2 Z3 
MPSO 2.0794 9 6 1.6774 2 444.01 546.63 649.25 

Table 6 Results of fuzzy model following necessity measure for fitness 

Algorithm T N M m1 m2 Z1 Z2 Z3 
MPSO 2.0794 9 5 1.6627 2 445.29 546.47 647.65 

6 Managerial implications and insights 

In the present investigation, several cases of the models with the credit period are 
formulated with respect to retailer and presented. Manager of a retail shop can take the 
managerial decisions depending upon the actual prevailing situation which fits best with 
the given models for maximum profit. 

1 This model suggests to a manager of a sector how to determine the number of cycles 
for which price discount is offered so that the profit can be maximised. 

2 Results of the models with crisp and imprecise parameters are presented. Manager of 
a retail shop can choose their appropriate model depending upon the nature of 
parameters. 
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7 Conclusions 

In this paper, a fuzzy lifetime-based MPSO algorithm is proposed which is efficient in 
solving constrained optimisation problem with crisp as well as fuzzy objective. The main 
features of the developed algorithm are summarised below: 

• at the time of birth of a swarm, diversity is maintained using information entropy 
theory 

• initial value of probability of mutation pm(0) and inertia weight w(0) are taken very 
high and gradually decreases (towards a minimum limiting value) with increase of 
iteration counter 

• crossover operations are made on the particles whose movements are not made using 
normal PSO functions 

• moreover, if no movement of a particle is made during a finite number of generation 
(i.e., if age exceeds the lifetime), it is discarded from the swarm. 

These realistic features make the algorithm more powerful in searching the global optima 
(if it exists). Performance of the MPSO algorithm (tested against a list of TFs) concludes 
that it is good enough. As the developed algorithm is more efficient, so that it can be used 
to solve different decision-making problems in different fields of science and technology. 
Here also, a production inventory model is developed incorporating the effect of stock 
and price on demand when price discount is offered to the customers for few cycles. 
Moreover, learning effects on production cost and setup cost are incorporated in this EPQ 
model. The aim of adaptation of the model is fourfold.  

• study the effect of both the stock and price on demand when price discount is offered 
to the customers 

• incorporate employees learning effects on production and set-up cost in a finite rate 
production model 

• introduce lifetime of a product as random in nature in a EPQ model 

• propose a MPSO algorithm which can deals with crisp as well as fuzzy objective 
function 

Here, in the fuzzy model, production cost coefficients are not considered as fuzzy. It is 
due to the fact that if production cost is fuzzy then demand becomes fuzzy. If demand is 
fuzzy then cycle length will vary from cycle to cycle, as well as due to the impreciseness 
of demand, production quantities for different cycles may finish before the end of some 
cycles as well as may excess at the end of other cycles. So it is difficult to find optimal 
decision in that case following this approach. On the other hand, there are also some 
limitations in this algorithm which are given below. 

• solutions obtained in this approach are normally near optimal, not exact 

• near optimal solutions may not occur in some runs of the algorithm. 

Further research work can be made on the optimisation problem with other environments 
like – rough, fuzzy-rough, fuzzy-random etc. Also, this model can be extended to a 
‘multi-item inventory model’ by considering more than one item in the system. Again 
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due to generalised solution methodology, this approach can be applied to solve other 
inventory control problems along with the problems in other disciplines. 
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Appendix A 

Let a�  and b�  be two fuzzy numbers with membership functions ( )aμ x�  and ( )bμ x�  
respectively. Then according to Dubois and Prade (1980), Liu and Iwamura (1998) and 
Zadeh (1978), 

( ){ }( * ) sup min ( ), ( ) , , , *a bpos a b μ x μ y x y x y= ∈ℜ����  (30) 

where the abbreviation pos represents possibility, * is any one of the relations >, <, =, ≤, 
≥ and ℜ represents set of real numbers. 

( * ) 1 ( * )nes a b pos a b= −� �� �  (31) 

where the abbreviation nes represents necessity. 
Similarly, possibility and necessity measures of a�  with respect to b�  are denoted by 
( )b a∏ � �  and ( )bN a� �  respectively and are defined as 

( ){ }( ) sup min ( ), ( ) , ,ab ba μ x μ x x∏ = ∈ℜ� ���  (32) 

( ){ }( ) min sup ( ), 1 ( ) , ,ab bN a μ x μ x x= − ∈ℜ� ���  (33) 

If ,a b ⊆ ℜ��  and ( , )c f a b= �� �  where :f ℜ×ℜ→ℜ  is a binary operation then 
membership function cμ �  of c�  is defined as Dubois and Prade (1980) 

( ){ }For each , ( ) sup min ( ), ( ) , , , and ( , )c a bz μ z μ x μ y x y z f x y∈ℜ = ∈ℜ =�� �  (34) 

LFN: a LFN ( )1 2,a a a=�  has two parameters a1, a2, where a1 < a2 and is characterised by 
the membership function ( ),aμ x�  given by 

1

1
1 2

2 1

2

0         for

( ) for

1          for

a

x a
x aμ x a x a

a a
x a

≤⎧
⎪ −⎪= ≤ ≤⎨ −⎪
⎪ ≥⎩

�  (35) 

Triangular fuzzy number (TFN): a TFN 1 2 3( , , )a a a a=�  has three parameters a1, a2, a3, 
where a1 < a2 < a3 and is characterised by the membership function ( ),aμ x�  given by 

1
1 2

2 1

3
2 3

3 2

for

( ) for

0          otherwise

a

x a a x a
a a

μ x a x a x a
a a

−⎧ ≤ ≤⎪ −⎪⎪= −⎨ ≤ ≤⎪ −
⎪
⎪⎩

�  (36) 

According to above definitions following lemmas can easily be derived. 

Lemma 1: if 1 2 3( , , )a a a a=�  be a TFN with 0 < a1 and b is a crisp number then  
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( ) ( )1 2 1 ( ) 1nes a b iff b a a aα α> ≥ − − ≤ −�  

Lemma 2: if 1 2 3( , , )a a a a=�  be a TFN and ( )1 2,b b b=�  be a LFN with 0 < a1 and 0 < b1 
then 

2 2

3 1
2 2 3 1

3 2 2 1

1                       if

( ) if  and 

0                      otherwise

a

a b
a bb a b a b

a a b b

≥⎧
⎪ −⎪∏ = ≤ >⎨ − + −⎪
⎪⎩

� �  

Lemma 3: if 1 2 3( , , )a a a a=�  be a TFN and ( )1 2,b b b=�  be a LFN with 0 < a1 and 0 < b1 
then 

1 2

2 1
2 1 2 1

2 1 2 1

1                       if

( ) if  and 

0                      otherwise

a

a b
a bN b a b b a

a a b b

≥⎧
⎪ −⎪= > >⎨ − + −⎪
⎪⎩

� �  

Lemma 4: if 1 2 3( , , )a a a a=�  be a TFN and b be a crisp number with 0 < a1 and 0 < b, 

1
2 1

2 1

3
3 2

3 2

if

( ) ( ) if

0         otherwise

a
a

b a a b a
a a

b N b a b a b a
a a

−⎧ ≥ ≥⎪ −⎪⎪= = −⎨ ≥ ≥⎪ −
⎪
⎪⎩

∏ ��
 

Appendix B 

Optimisation with stochastic constraints (Charnes and Cooper, 1959): let x =(x1, x2,…, 
xn)T, be the decision vector, y = (y1, y2,…,yN)T be the vector of N random variables with 
known mean and standard deviation, where y1, y2,…,yN represents N parameters of the 
problem, then a stochastic nonlinear programming problem (SNLP) can be stated in 
standard form as follows:  

( )

1 2Find ( , , )
which minimize/maximize ( , )
subject to ( , ) 0 ( 1, , )
where ( ( , ) 0) representsprobability of the event ( , )

T
n

r r

r r

x x x x
f x y
P φ x y p r m

P φ x y φ x y

=

≥ ≥ =

≥

…

…
 (37) 

According to Charnes and Cooper (1959), if all yi(i = 1,2,…,N) follow independent 
normal distribution, the stochastic problem stated above is equivalent to following crisp 
nonlinear programming problem. 



   

 

   

   
 

   

   

 

   

    A fuzzy lifetime-based PSO with varying swarm size 97    
 

    
 
 

   

   
 

   

   

 

   

       
 

( )

1 2

1
2

2

Find ( , ,... )
which minimize/maximize ( , )

,
subject to 0 ( 1, , )

where  and  are mean and standard deviation of ( , )respectively.

1Also, is given by 
2

i

r

T
n

r
r r y

i

r φ r

r r

x x x x
f x y

φ x y
φ ε σ r m

y
φ σ φ x y

ε p
π

=

⎡ ⎤⎛ ⎞∂
− ≥ =⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

=

∑ …

2 /2
rε

te dt−

−∞
∫

 (38) 

Appendix C 

Following are the list of TFs which are used to test the efficiency of the proposed MPSO 
algorithm. It is observed that results obtained by MPSO for different TFs are equal to the 
global optimum in most of the cases and in other cases solutions are very near to global 
optima. This implies that this algorithm can be used as decision-making tool for different 
constrained/unconstrained optimisation problems. 

TF-1 (taken from Bessaou and Siarry, 2001) 

( ) ( ) ( ) ( ) ( ){ }2 2
1 2 1 2 1 2 

1 2

, cos cos exp  ,

10 , 10.

ES x x x x x π x π

x x

⎡ ⎤= − × × − − + −⎣ ⎦
− ≤ ≤

 

This TF has one global minima at (x1, x2) = (π, π) and ES(π, π) = −1. 

TF-2 (taken from Bessaou and Siarry, 2001) 

( ) ( ) ( )
22

1 2 1 2, , , sin in( . , , , ,
m

n i i nMZ x x x x i x π π x x x π⎡ ⎤= − − ≤ ≤⎣ ⎦∑… …  

where m = 10. For n = 2, it has one global minima at (x1, x2) = (2.25, 1.57) and 
MZ(2.25, 1.57) =−1.80. 

TF-3 (taken from Michalewicz, 1992): 

( ) ( ) ( )1 2 1 22 2
2 2

1 2 1 21 2

Minimize , 2 1 ,

such that – 0, 2, 5 , 5.

F x x x x

x x x x x x

= − + −

+ >= + <= − <= <=
 

It has one global minima at (x1, x2) =(1, 1), and F(1, 1) = 1. 

TF-4 (taken from Bessaou and Siarry, 2001): 

( ) ( )2
1 2 1 1 1 222( , ) 100 1 , 2.048 , 2.048.F x x x x x x x= × − + − − ≤ ≤  

It has one minima at (x1, x2) = (2.048, 0) and F2(2.048, 0) = −205.8480. 
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TF-5 (taken from Bessaou and Siarry, 2001): 

( ) [ ] [ ]
5 5

1 2 1 2 1 2
1 1

, cos ( 1) cos ( 1) , 10 , 10
j j

SH x x j j x j j j x j x x
= =

× + × + × × + × + − ≤ ≤∑ ∑  

This problem has 760 local minima and 18 global minima. At global minima (x1, 
x2), SH(x1, x2) = −186.7309. 

TF-6 (taken from Bessaou and Siarry, 2001): 

( ) ( ) ( ){ } [ ]{ }
( )

2
2 2

1 2 2 1 1

1 1 2

, 5 4 . 5 6 10 1 1 (8 )

                  cos 10, 5 10, 0 15

RC x x x π x π x π

x x x

⎡ ⎤= − × + × − + × −⎣ ⎦
× + − ≤ ≤ ≤ ≤

 

This problem has three global minima at (x1, x2) = (–π, 12.275), (π, 2.275), 
(9.42478, 2.475) and RC(x1, x2) = 0.397887 at any one of these minima. 

TF-7 (taken from Bessaou and Siarry, 2001) 

( ) ( ) ( )
1

2 22
1 2 1

1

1 2

Minimize , , , 100 1 ,

1 , , , 5.

n

n n j j j
j

n

F x x x x x x

x x x

−

+
=

⎡ ⎤= × − + −⎣ ⎦

− ≤ ≤

∑…

…

 

Two functions F2 and F4 are used. This problems has one global minima at (x1, 
x2,…, xn) = (1, 1,…, 1) and Fn(1, 1,…,n) = 0. 

TF-8 (taken from Bessaou and Siarry, 2001): 

( ) ( ) ( )2 2
1 2 1 2 1 2 1 2, 2 0.3 cos 3 cos 4 0.3, 5 , 5BH x x x x πx πx x x= + × − × × + − ≤ ≤  

This problem has one global minima at (x1, x2) = (0, 0) and BH(0, 0) = 0. 

TF-9 (taken from Michalewicz, 1992): 

( ) ( ) ( )22
1 2 2 1 1

2 2
1 1 2 1 22

Minimize , 100 1 ,

such that 0, 0, 0.5 0.5, 1.0 1.0

F x x x x x

x x x x x x

= × − + −

+ ≥ + ≥ − ≤ ≤ − ≤ ≤
 

It has one global minima at (x1, x2) = (0.5, 0.25), and F(0.5, 0.25) = 0.25. 

TF-10 (taken from Bessaou and Siarry, 2001): 

( )
2 4

2
1 2

1 1 1

1 2

, , , 0.5 0.5 ,

5 , , , 5

n n n

n n j jj
j j j

n

Z x x x x x j x

x x x
= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + × + ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

− ≤ ≤

∑ ∑ ∑…

…

 

It has one global minima at (x1, x2,…, xn) = (0, 0,…, 0) and Zn(0, 0,…, 0) = 0.  


