

 68 Int. J. Computational Complexity and Intelligent Algorithms, Vol. 1, No. 1, 2016

 Copyright © 2016 Inderscience Enterprises Ltd.

A fuzzy lifetime-based particle swarm optimisation
with varying swarm size to solve a production
inventory model

Partha Guchhait*
Department of Mathematics,
Vidyasagar University,
Midnapore, Paschim-Medinipur, West Bengal, 721102, India
Email: parthaguchhait@gmail.com
*Corresponding author

Manas Kumar Maiti
Department of Mathematics,
Mahishadal Raj College,
Mahishadal, Purba-Medinipur, West Bengal, 721628, India
Email: manasmaiti@yahoo.co.in.

Abstract: Here, a modified particle swarm optimisation (MPSO)
algorithm with varying swarm size for constrained optimisation problem is
proposed. In this MPSO, a life time is assigned to each particle at the time of
generation depending on its fitness. After completion of a generation, if no
movement is made by the particle, its age is increased by unity. When age of a
particle exceeds the lifetime, it is discarded from the swarm. Diversity
in the swarm is maintained using information entropy theory. A fuzzy
possibility/necessity-based fitness evolution is proposed to deal with fuzzy
optimisation problems using this MPSO. Efficiency of the algorithm is tested
against a list of crisp valued standard benchmark nonlinear test functions. This
algorithm is used to solve a production inventory model with fuzzy costs,
where lifetime of the product is random in nature. At the beginning of planning
horizon price discount is offered to the customers for few cycles to boost the
demand. Demand also depends on stock and selling price. The model is
illustrated with numerical examples and some sensitivity analyses have been
made.

Keywords: modified PSO algorithm; fuzzy lifetime; varying swarm size;
possibility/necessity measure; EPQ model; price discounted promotional
demand; random planning horizon.

Reference to this paper should be made as follows: Guchhait, P. and
Maiti, M.K. (2016) ‘A fuzzy lifetime-based particle swarm optimisation
with varying swarm size to solve a production inventory model’,
Int. J. Computational Complexity and Intelligent Algorithms, Vol. 1, No. 1,
pp.68–98.

Biographical notes: Partha Guchhait is a Teacher of Mathematics at Dherua
Anchal Satabala High School, Paschim-Medinipur, West Bengal, India.
He received his BSc in Mathematics and MSc in Applied Mathematics
from Vidyasagar University, Midnapore, Paschim-Medinipur, West Bengal,
India. He recieved his PhD (2013) in Applied Mathematics from Vidyasagar

 A fuzzy lifetime-based PSO with varying swarm size 69

University. He has ten publications so far in reputed research journals. His
research interests include inventory control, fuzzy mathematics, soft computing
techniques, multi-objective optimization, transportation problems, knapsack
problems, etc.

Manas Kumar Maiti is working in the Department of Mathematics, Mahishadal
Raj College, Mahishadal, Purba-medinipur, West Bengal, India. He received
his MSc and MPhil in Applied Mathematics from Calcutta University,
Midnapore, Paschim-Medinipur, West Bengal, India, and MTech in Computer
Science from I.I.T Kharagpur, West Bengal, India. He received his PhD (2006)
in Applied Mathematics from Vidyasagar University, India. He has more
than 40 publications in reputed research journals. His fields of interest are
inventory control, transportation problem, travelling salesman problem,
portfolio management, fuzzy mathematics, soft computing techniques, etc.

1 Introduction

The particle swarm optimisation (PSO) is a exhaustive search algorithm based on the
motion of a flock of birds searching for food. A PSO starts with a set of potential
solutions which is called swarm of the decision-making problem under consideration.
Individual solutions are called particles and food is analogous to optimal solution. Since
the introduction of the PSO, it is modified and the process is still going on. Here, this
algorithm is modified with the introduction of life-time for each particle of a swarm at the
time of their birth and it is done depending on their fitness. After completion of a
generation, if no movement is made by a particle, its age is increased by unity. It is
discarded from the swarm when age exceeds its life-time. At the time of generation of
initial swarm, diversity in the swarm is maintained using information entropy theory.
Diversity in the swarm is checked after a fixed number of generations, called period.
After each period, swarm size may change depending on the diversity of the swarm. If
diversity level drops below the fixed threshold, some new (child) particles are included in
the swarm. Child particles are obtained using fuzzy life-time-based crossover and
mutation operations on the particles of the swarm. Similarly, if the diversity exceeds a
predefined upper limit, some particles are discarded. In the algorithm, crossover
probability of a pair of parents is a function of their age-type (young, middle-aged, old,
etc.) and is obtained using a fuzzy rule-base and possibility theory (cf., Appendix A).
Inertia weight (w) and probability of mutation (pm) are initially taken very high and
gradually decreases to a certain limit with iteration using a particular law [cf., Section 4.1
(h)]. Due to these improvements, this algorithm [called modified PSO i.e., modified
particle swarm optimisation (MPSO)] has more global search ability at the beginning of
the run and has more local search ability near the end of the run. Performance of this
algorithm is tested against a set of well established benchmark nonlinear test functions
(TFs) of which local and global extrema are known. These TFs (cf., Appendix C) and
their global/local optima obtained by the proposed MPSO are presented. This algorithm
is used to find optimal decision of a production inventory model with stock and price
discounted promotional demand in a random planning horizon.

In this paper, a production inventory model of an item is developed, where lifetime of
the product is assumed as random in nature and follows normal distribution with known

 70 P. Guchhait and M.K. Maiti

mean and standard deviation. It is also assumed that producer offers a price discount
period to his customers in few cycles at the beginning of the planning horizon. During
these period, demand increases in each cycle depending on the discount rate. Demand
also depends on stock and selling price. After withdrawals of price discount period,
demand depends on stock and price for the rest of the cycles. There is only one stochastic
constraint – sum of the production cycle length is less than the length of random planning
horizon. Models are formulated for both the crisp and fuzzy inventory costs. For crisp
inventory parameters, total profit under the above mentioned constraint is maximised
using the proposed MPSO to take optimal decisions. When some inventory parameters
are fuzzy in nature, total profit through out the system is fuzzy in nature too. In this case,
optimal decisions are made using the proposed MPSO with fuzzy objective function.
Again, the model is also solved by another soft computing technique i.e., genetic
algorithm (GA) (proposed by Guchhait et al., 2010). Obtained results with these two
techniques are compared and presented. The models are illustrated with numerical
examples and some sensitivity analyses have been made.

2 Literature review

The PSO algorithm has been introduced by Kennedy and Eberhart (1995) and is inspired
by the emergent motion of a flock of birds searching for food. It is not only a recently
invented high performance optimiser that is easy to understand and implement but, it also
requires little computational bookkeeping and generally only a few lines of code
(Boeringer and Werner, 2004). Since its introduction, PSO has seen many improvements
and applications. Like other heuristics, most of the improvements on PSO are directed
towards improving the convergence and increasing the diversity of the swarm. A brief
discussion on its improvement in different directions and applications are given in
Engelbrecht (2005). Some researchers tried to improve the performance of PSO by
variable parameters (Shi and Eberhart, 1998; Zheng et al., 2003; Ratnaweera et al., 2004),
some other change the updating equation (Ueno et al., 2005), or adapted operators of the
GA (Michalewicz, 1992) or evolutionary strategy (ES) such as crossover, mutation, and
sharing (Shi et al., 2005). Similar to other heuristics, PSO also has the problem of
converging to undesired local optima because of the diversity of swarm decreasing in
latter evolutionary periods and excessive combination with other evolutionary methods
may weaken the powerful advantages of PSO. Chen and Zhao (2009) proposed a PSO
that uses an adaptive variable swarm size method. In their work, the setting generation is
divided into several equal periods; each period is called a ‘ladder’ (a fixed number of
generations). This heuristic algorithm is developed with periodic partial increasing or
declining of individuals according to diversities in the end of every ladder. Also, in each
ladder, the current swarm maintains the same size and the diversity are estimated only at
the end of this ladder. If the current diversity is larger than the threshold, the swarm size
will be decreased and particles with small score in the ladder will be removed, if the
current diversity values is smaller than the threshold, some new individuals produced by
the crossover operator will appended to the swarm, otherwise, the swarm size is
maintained in current level. So, the swarm size of the ladder is determined by the
diversity of the swarm in the terminal of their front ladder (previous ladder).

Now-a-days, it is found (in the subcontinent countries) that some manufacturers offer
price discount in the form of putting additional unit(s) in every pack of that item. This

 A fuzzy lifetime-based PSO with varying swarm size 71

process of boosting a product is commonly practiced by the manufacturer especially
when a product is newly launched in the market. Pal et al. (2009) developed an EPQ
model incorporating price discounted promotional demand in a fuzzy planning horizon.
They assume that producer offers price discount in every production cycle for some time,
but ignore the effect of product availability in stimulating demand, though this effect is
well established (Chung et al., 2000; Maiti and Maiti, 2006). Liang and Zhou (2011)
published a two-warehouse inventory model for deteriorating items under conditionally
permissible delay in payment. Recently, Molamohamadi et. al. (2014) presented a review
article of inventory models under trade credit which really helps the young researchers in
this direction.

Production-inventory/inventory models are normally developed under the common
assumption that product lifetime is infinite and models are developed under infinite
planning horizon (Abad, 2000; Sarkar et. al., 2011; Guchhait et. al., 2010, 2013; De and
Sana, 2013; De et. al., 2014). According to this assumption, product specification remains
unchanged for ever. But, in reality it is observed that rapid development of technology
leads to rapid change in product specifications with new features, new packets and name.
Naturally, lifetime of a product is finite and normally it is imprecise (stochastic or fuzzy)
in nature. In the literature, there are number of papers with this assumption of stochastic
parameters (Gurnani, 1983; Moon and Yun, 1993; Roy et al., 2007). In fact estimation of
stochastic parameters is made on sufficient amount of past data. On the other hand,
estimation of fuzzy parameters is done by expert's opinion. So when past data is
insufficient (especially for the newly lunched products) one has to depend on fuzzy
parameters. But, only few number of production inventory models have been developed
incorporating this realistic feature (Taleizadeh et. al., 2013; Guchhait et. al., 2012;
Chakraborty et. al., 2013; De and Sana, 2013). Accordingly, the problem is developed
with fuzzy parameters.

Production cost of a manufacturing system mainly depends on the cost of raw
materials and labour. Normally, raw material costs are imprecise in nature. In the existing
literature of production/inventory control problems, labour cost is usually assumed as
constant. However, in many realistic situations, because of the firms and employees
perform the same task repeatedly; they learn how to perform rapidly. Therefore,
processing cost of per unit product decreases to a certain limit in every cycle. At the same
time, part of ordering cost may also decreases to a certain limit in every cycle. This
phenomenon is known as the ‘learning effect’, in the literature. Although, different types
of learning effects have been studied in various areas (Kuo and Yang, 2006), it has rarely
been studied in the context of inventory control problems (Pal et al., 2009).

3 Mathematical prerequisite

The following notations and assumptions are used in developing the model.

• Notations
T length of one cycle
K production rate
Qi maximum inventory level in ith cycle
ch holding cost per unit in $

 72 P. Guchhait and M.K. Maiti

�

qi(t) inventory level at any time t in ith cycle

Z total profit from N cycles

α probability level for the stochastic constraint on the planning horizon.

• Assumptions

1 Inventory system involves only one item.

2 The time horizon H is random in nature and follows normal distribution with
known mean mH and standard deviation σH and h is real planning horizon such
that P(H ≤ 0) is negligible.

3 The time horizon accommodates N full cycles, i.e., NT ≤ h.

4 Price discount is offered to the customers in the first M cycles.

5 Production cost per unit in ith cycle cpi = cr + Li, where cr is raw material cost and
Li is labour cost. Li decreases in each cycle due to learning effect and is of the
form 10 1 / ,iL L L iβ= + where L0, L1 and β1 are constants so chosen to best fit the
labour cost function.

6 Setup cost in ith cycle csi(in $) is partly constant and partly decreases in each cycle
due to learning effect of the employees and is of the form: 10 1 /sic c c iβ= + where
c0, c1 and β1 are constants so chosen to best fit the set-ut cost function.

7 Selling price in ith cycle spi is a mark-up of production cost cpi. m1 and m2 are
mark-ups during price discount period and normal period respectively, i.e.,

1 1

2 2 1

for 0 ; 1,
for ; ,

pi
pi

pi

m c t MT m
s

m c MT t NT m m
≤ ≤ >⎧

= ⎨ ≤ ≤ >⎩

8 Demand of the item in ith cycle Di is of the form:

()

()

()

()

2 1

2 1

2 1

2 1

0

1
0

0

0

2
0

0

for 0
0 ,

for

()
for 0

,
for

m m iT
i

iγ
pi

pi pim m iT

i iγ
pi

i
m m MT

i
iγ

pi
pi pim m MT

i iγ
pi

A Bq CR q Q
s

t MT s m c
A BQ CR Q q Q

s
D t

A Bq CR q Q
s

MT t NT s m c
A BQ CR Q q Q

s

−

−

−

−

⎧ ⎫+ −
≤ ≤⎪ ⎪

⎪⎪ ≤ ≤ =⎬⎪ + − ⎪⎪ ≤ ≤ ⎪⎪ ⎭= ⎨
⎫+ −⎪ ≤ ≤ ⎪⎪ ⎪⎪ ≤ ≤ =⎬

⎪ + − ⎪≤ ≤⎪ ⎪⎭⎩

where A, B(0 < B < 1), C, and R(0 < R < 1) are four parameters so chosen to best
fit the demand function. Qi is the maximum inventory level in ith cycle and
displayed inventory has impact on demand up to level Q0.

 A fuzzy lifetime-based PSO with varying swarm size 73

9 Here, T, N, M, m1 and m2 are decision variables.
In the development of the model, it is assumed that the life time of the product,

ˆ ,H is random in nature and this is taken as planning horizon of the model. ‘N’
cycles are completed during the real time horizon ‘h’, here length of each cycle is
‘T’ and then NT <= h clearly. At the beginning of ith cycle, i.e., at t = (i − 1)T,
item is produced at a rate ‘K’ and inventory is built up at a rate K − Di(t). When t
= (i − 1)T + t0i, inventory level reaches Q0. Production stopped when t = (i − 1)T
+ t1i and at that time inventory level reaches Qi. After that, inventory is depleted
due to the demand rate Di(t) and its level reaches Q0 again at t = (i − 1)T + t2i.
Finally, inventory vanishes at t = iT and production for next cycle starts.
Inventory levels over time are depicted in Figures 1 and 2.

Figure 1 Inventory levels in ith cycles when Q0 < Qi

Figure 2 Inventory levels in ith cycle when Q0 > Qi

3.1 Formulation for first M cycles

Depending upon the values of Q0 and Qi two cases may arise.

Case 1 (Q0 <= Qi): according to the above assumptions, instantaneous state qi(t) of the
item in ith (i <= M)cycle ((i − 1)T <= t <= iT) is given by

 74 P. Guchhait and M.K. Maiti

()

()

()

()

2 1

2 1

2 1

2 1

0
1

0
0 1

1

1 2
1

0
2

1

(1) (1)

(1) (1)
()

(1) (1)

(1)

m m iT
i

iγ
pi

m m iT

i iγ
pii
m m MT

i
i iγ

pi

m m MT

iγ
pi

A Bq CRK i T t i T t
m c

A BQ CRK i T t t i T t
m cdq t

dt A Bq CR i T t t i T t
m c

A BQ CR i T t t iT
m c

−

−

−

−

⎧ + −
− − ≤ ≤ − +⎪

⎪
⎪ + −

− − + ≤ ≤ − +⎪
⎪= ⎨

+ −⎪− − + ≤ ≤ − +⎪
⎪
⎪ + −
− − + ≤ ≤⎪
⎩

 (1)

where qi((i – 1)T = 0, qi((i – 1)T + t0i) = Q1, qi((i – 1)T + t1i =Qi, qi((i – 1)T + t2i = Q0,
qi(iT) = 0.

Solving the equation (1) and using the boundary conditions we have

() () ()

() ()

2 1

2 1

1 1
0

1 0

log
γ γ m m iT

pi pi
i γ m m iT

pi

m c K m c A CR
t

B K m c A BQ CR

−

−

⎡ ⎤− +
⎢ ⎥=
⎢ ⎥− − +⎣ ⎦

 (2)

() ()

()

2 1

2 1

1 0
2 log

γ m m iTpi
i m m iT

m c A BQ CRt T
B A CR

−

−

⎡ ⎤+ −
= − ⎢ ⎥−⎣ ⎦

 (3)

()
()

()
2 10

1 0 2 0
1

m m iT

i i i i γ
pi

A BQ CRt t t t
K m c

−⎡ ⎤+ −
= + − ⎢ ⎥

⎢ ⎥⎣ ⎦
 (4)

()
()

()

() (){
()

2 1

2 1

0
0 2 0

1

1 0

1

m m iT

i i i γ
pi

γ m m iT
pi

γ
pi

A BQ CRQ Q t t
K m c

K m c A BQ CR

K m c

−

−

⎡ ⎤+ −
= + − ⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤− + −
⎢ ⎥
⎢ ⎥⎣ ⎦

 (5)

So, the holding cost for ith cycle, chHOCi = ch (H1 + H2 + H3 + H4), where

()
() (){ }

() () (){ }

() ()

() (){ }

0 0

2 1

2 1

2 1

2 1

(1)
1

1
1(1) 0

1
12

1
0

1

()
()

log

ii T t Q γ
pi i i

i γ m m iT
pi ii T

γ
pi γ m m iT

pi

γ m m iT
pi

γ m m iT
pi i

m c q t dq
H q t dt

K m c A Bq CR

m c
K m c A CR

B

K m c A CR
BQ

K m c A Bq CR

− +

−
−

−

−

−

⎡ ⎤
⎢ ⎥= =
⎢ ⎥− + −⎣ ⎦

⎡
⎢= − +⎢
⎢⎣

⎤⎧ ⎫− +⎪ ⎪ ⎥× −⎨ ⎬
⎥− + −⎪ ⎪⎩ ⎭ ⎦

∫ ∫

 (6)

 A fuzzy lifetime-based PSO with varying swarm size 75

()
() (){ }

()()
() (){ }

1 1

2 1
0 0

2 1

(1)
1

2
1 0(1)

2 2
10

1 0

()
()

2

i

i

i T t Q γ
pi i i

i γ m m iT
pii T t Q

γ
pii

γ m m iT
pi

m c q t dq
H q t dt

K m c A BQ CR

Q Q m c

K m c A BQ CR

− +

−
− +

−

⎡ ⎤
⎢ ⎥= =
⎢ ⎥− + −⎣ ⎦

−
=

⎡ ⎤− + −⎣ ⎦

∫ ∫
 (7)

()
()

()()
()

2 0

2 1 2 1
1

(1) 2 2
1 10

3
0 0(1)

()
()

2

i

i i

i T t Q γ γ
pi i i pii

i m m iT m m iT
i T t Q

m c q t dq Q Q m c
H q t dt

A BQ CR A BQ CR

− +

− −
− +

− −
= = =

+ − ⎡ ⎤+ −⎣ ⎦∫ ∫ (8)

()
()

() (){ }

2 1

2 0

2 1
2 1

2 1

0
1

4
0(1)

()1 0
02 ()

()
()

log
}

i

γiT
pi i i

i m m iT
i T t Q

γ m m iTpi m m iT
m m iT

m c q t dq
H q t dt

A BQ CR

m c A BQ CRBQ A CR
B A CR

−
− +

−
−

−

−
= =

+ −

⎤+ +⎧ ⎫⎡= − − × ⎨ ⎬⎥⎣ −⎩ ⎭⎦

∫ ∫
 (9)

Case2 (Q0 > Qi): in this case, instantaneous state qi(t) of the item in ith (i <= M) cycle
((i – 1)T <= t< = iT) is given by

()

()

2 1

2 1

1
1

1
1

(1) (1)
()

(1)

m m iT
i

iγ
pii
m m MT

i
iγ

pi

A Bq CRK i T t i T t
m cdq t

dt A Bq CR i T t t iT
m c

−

−

⎧ + −
− − ≤ ≤ − +⎪

⎪= ⎨
+ −⎪− − + ≤ ≤⎪

⎩

 (10)

where qi((i – 1)T) = 0, qi ((i – 1)T + t1i) = Qi, qi(iT) = 0.
Solving the equation (10) and using the above boundary conditions we have

(){ } (){ } () (){ }
() (){ } (){ } ()

1 2 1 2 1

12 1 2 1

/
1

/
1

1
γ

pi

γ
pi

γTB m c m m iT m m iT
pi

i γ TB m cm m iT m m iT
pi

e A CR m c K A CR
Q

B m c K A CR A CR e

− −

− −

− − − +
=

⎡ ⎤− + + −⎣ ⎦

 (11)

() () ()

() ()

2 1

2 1

1 1
1

1

log
γ γ m m iT

pi pi
i γ m m iT

pi i

m c m c K A CR
t

B m c K A BQ CR

−

−

⎡ ⎤− +
⎢ ⎥=
⎢ ⎥− − +⎣ ⎦

 (12)

So, the holding cost for ith cycle, chHOCi = ch(H1 + H2), where

1

1

(1)

1 2

(1) (1)

() and ()
i

i

i T t iT

i i

i T i T t

H q t dt H q t dt
− +

− − +

= =∫ ∫

Can be obtained easily as in Case 1 of Section 3.1

 76 P. Guchhait and M.K. Maiti

3.2 Formulation for last N-M cycles

Depending on the values of Q0 and Qi, again two cases may arises.

Case 1 (Q0 <= Qi): according to the above assumptions, instantaneous state qi(t) of the
item in ith (i > M) cycle ((i − 1)T = t = iT) is given by

()

()

()

()

2 1

2 1

2 1

2 1

0
2

0
0 1

2

0
1 2

2

0
2

2

(1) (1)

(1) (1)
()

(1) (1)

(1)

m m iT
i

iγ
pi

m m iT

i iγ
pii
m m MT

i iγ
pi

m m MT

iγ
pi

A Bq CRK i T t i T t
m c

A BQ CRK i T t t i T t
m cdq t

dt A BQ CR i T t t i T t
m c

A BQ CR i T t t iT
m c

−

−

−

−

⎧ + −
− − ≤ ≤ − +⎪

⎪
⎪ + −⎪ − − + ≤ ≤ − +
⎪⎪= ⎨

+ −⎪− − + ≤ ≤ − +⎪
⎪
⎪ + −
− − + ≤ ≤⎪
⎪⎩

 (13)

where qi((i – 1)T = 0, qi((i – 1)T + t0i) = Q0, qi((i – 1)T + t1i) = Qi, qi((i – 1)T + t2i) = Q0,
qi(iT) = 0.

Solving the equation (13) and using the boundary conditions we have,

() () ()

() ()

2 1

2 1

2 2
0

2 0

log
γ γ m m MT

pi pi
i γ m m MT

pi

m c K m c A CR
t

B K m c A BQ CR

−

−

⎡ ⎤− +
⎢ ⎥=
⎢ ⎥− − +⎣ ⎦

 (14)

() ()

()

2 1

2 1

?2 0
2 log

γ m m MTpi
i m m MT

m c A BQ CRt T
B A CR

−

−

⎡ ⎤+ −
= − ⎢ ⎥−⎣ ⎦

 (15)

()
()

()
2 10

1 0 2 0
2

m m MT

i i i i γ
pi

A BQ CRt t t t
K m c

−⎡ ⎤+ −
= + − ⎢ ⎥

⎢ ⎥⎣ ⎦
 (16)

()
()

()
2 1

2 1

0
0 2 0

2

()
2 0

2

() { }

()

m m MT

i i i γ
pi

γ m m MT
pi

γ
pi

A BQ CRQ Q t t
K m c

K m c A BQ CR
K m c

−

−

⎡ ⎤+ −
= + − ⎢ ⎥

⎢ ⎥⎣ ⎦
− + −⎡ ⎤

⎢ ⎥
⎣ ⎦

 (17)

So, the holding cost for ith cycle, chHOCi = ch(H1 + H2 + H3 + H4), where

0 1 2

0 1

2

(1) (1) (1)

1 2 3

(1) (1) (1)

4

(1)

() , () , ()

and ()

i i i

i i

i

i T t i T t i T t

i i i

i T i T t i T t

iT

i

i T t

H q t dt H q t dt H q t dt

H q t dt

− + − + − +

− − + − +

− +

= = =

=

∫ ∫ ∫

∫

Can be obtained easily as in Case 1 of Section 3.1

 A fuzzy lifetime-based PSO with varying swarm size 77

Case 2 (Q0 > Qi): in this case, instantaneous state qi(t) of the item in ith (i > M) cycle
((i –1)T <= t< = iT) is given by

()

()

2 1

2 1

1
2

1
2

(1) (1)
()

(1)

m m MT
i

iγ
pii

m m MT
i

iγ
pi

A Bq CRK i T t i T t
m cdq t

dt A Bq CR i T t t iT
m c

−

−

⎧ + −
− − ≤ ≤ − +⎪

⎪= ⎨
+ −⎪− − + ≤ ≤⎪

⎩

 (18)

where qi((i – 1)T = 0, qi((i – 1)T + t1i) = Qi, qi(iT) = 0.
Solving the equation (18) and using the above boundary conditions we have

(){ } (){ } () (){ }
() (){ } (){ } ()

2 2 1 2 1

12 1 2 1

/
2

/
2

1
γ

pi

γ
pi

γTB m c m m MT m m MT
pi

i γ TB m cm m MT m m MT
pi

e A CR m c K A CR
Q

B m c K A CR A CR e

− −

− −

− − − +
=

⎡ ⎤− + + −⎣ ⎦

 (19)

() () ()

() ()

2 1

2 1

2 2
1

2

log
γ γ m m MT

pi pi
i γ m m MT

pi i

m c m c K A CR
t

B m c K A BQ CR

−

−

⎡ ⎤− +
⎢ ⎥=
⎢ ⎥− − +⎣ ⎦

 (20)

So, the holding cost for ith cycle, chHOCi = ch(H1 + H2), where

1

1

(1)

1 2

(1) (1)

() and ()
i

i

i T t iT

i i

i T i T t

H q t dt H q t dt
− +

− − +

= =∫ ∫

Can be obtained easily as in Case 1 of Section 3.1

3.3 Formulation of objective function

Incorporating all the cases, the total profit from N cycles can be represented by

– –Z SP PC HOC OC= − (21)

where

1 1 1 2
1 1

total selling price
M N

i pi i pi
i i M

SP Kt m c Kt m c
= = +

= = +∑ ∑

1
1

Total production cost
N

i pi
i

PC Kt c
=

= =∑

1

Total holding cost
N

i
i

HOC HOC
=

= =∑

{ }1
0

1 1

Total setup cost
N N

si
i i

cOC c c
iβ= =

= = = +∑ ∑

 78 P. Guchhait and M.K. Maiti

3.4 Model with crisp objective

When all the inventory parameters are crisp, then the problem reduces to determine T, N,
M, m1 and m2 to

()
Maximize

ˆsubject to

Z

P NT H α

⎫⎪
⎬

≤ > ⎪⎭
 (22)

Using the optimisation process with stochastic constraints by Charnes and Cooper (1959)
(cf., Appendix B), the above problem reduces to determine T, N, M, m1 and m2 to

2 2

Maximize

1subject to , where
2

ε
t

H H

Z

NT m εσ e dt
π

α −

−∞

⎫
⎪
⎬≤ − = ⎪
⎭

∫
 (23)

For different values of ‘α’, values of ‘ε’ are taken from standard normal distribution table
and the problem is solved using a modified heuristic technique MPSO (cf., §4).

3.5 Model with fuzzy objective

Here, it is assumed that the holding cost ‘ch’, the setup cost coefficients ‘c0’ and ‘c1’ as
triangular fuzzy number (TFN), 1 2 3(, ,),h h h hc c c c=� 0 01 02 03(, ,),c c c c=� 1 11 12 13(, ,)c c c c=�
respectively. Then, the total holding cost HOC becomes a TFN, HOCF = (HF1, HF2, HF3)
and the total setup cost OC also becomes a TFN, OCF = (OCF1, OCF2, OCF3) where

1
0

1 1

and , 1, 2, 3.
N N

j
Fj hj i Fj j

i i

c
H c HOC OC c j

iβ= =

⎧ ⎫= = + =⎨ ⎬
⎩ ⎭∑ ∑

Hence, the total profit Z also becomes a TFN, 1 2 3(, ,)Z Z Z Z=� where Z1 = SP – PC –
OCF3 – HF3, Z2 = SP – PC – OCF2 – HF2 and Z3 = SP – PC – OCF1 – HF1. So, the problem
reduces to

Determine T, N, M, m1 and m2 to

Maximize
ˆsubject to ()

Z

P NT H α

⎫⎪
⎬

≤ > ⎪⎭

�
 (24)

Using the optimisation process with stochastic constraints by Charnes and Cooper (1959)
(cf., Appendix B), the above problem reduces to

Determine T, N, M, m1 and m2 to

2 /2

Maximize

1subject to , where
2

ε
t

H H

Z

NT m εσ e dt
π

α −

−∞

⎫
⎪⎪
⎬

≤ − = ⎪
⎪⎭

∫

�

 (25)

This problem is solved using a modified MPSO algorithm (which is discussed below in
Section 4) for fuzzy objective.

 A fuzzy lifetime-based PSO with varying swarm size 79

4 Modified particle swarm optimisation

PSOs are exhaustive search algorithms based on the emergent motion of a flock of birds
searching for food (Eberhart and Kennedy, 1995; Kennedy and Eberhart, 1995) and have
been extensively used/modified to solve complex decision-making problems in different
field of science and technology (Engelbrecht, 2005; Esmin et al., 2002; Feng, 2005;
Liang et al., 2006). A PSO normally starts with a set of potential solutions (called swarm)
of the decision-making problem under consideration. Individual solutions are called
particles and food is analogous to optimal solution. In simple terms the particles are
flown through a multi-dimensional search space, where the position of each particle is
adjusted according to its own experience and that of its neighbours. Each particle ‘i’ has a
position vector Xi(t), a velocity vector Vi(t), the position at which the best fitness (pbesti)
encountered by the particle so far, and the best position of all particles (gbest) in current
generation t. In generation (t + 1), the position and velocity of the particle are changed to
Xi(t + 1) and Vi(t + 1) using following rules:

() ()1 1 2 2(1) () () () () ()i i pbesti i gbesti iV t wV t c r X t X t c r X t X t+ = + − + − (26)

(1) () (1)i i iX t X t V t+ = + + (27)

The parameters c1 and c2 are set to constant value, which are normally taken as 2, r1 and
r2 are two random values, uniformly distributed in [0, 1], w(0 < w < 1) is inertia weight
which controls the influence of previous velocity on the new velocity. Global search
performance is good with large inertial weight while a small inertia weight facilitates a
local search. As a result, in the beginning of searching, w is set to high value and
decreasing to a lower limit at the end of evolutionary processing. Due to these
improvements/changes, PSO have more global search ability at the beginning of the run
and have more local search ability near the end of the run. Better performance is derived
in many function optimisation problems (Chen and Zhao, 2009). The second part in
equation (26) is called cognition character and the third part is social character of
particles. The position of each particle is updated every generation. When a particle
discovers a pattern that is better than any that it has found previously, it will track the
better position by updating equations (26) and (27).

Similar to other heuristics, in PSO, poor parameter settings usually leads to several
problems such as premature convergence. PSO also has the problem of converging to
undesired local optima because of the diversity of swarm decreasing in latter periodic of
evolutionary. Again excessive combination with other evolutionary methods may weaken
the powerful advantages of PSO. Overcoming these drawbacks, Chen and Zhao (2009)
presented a PSO algorithm that uses an adaptive variable swarm size and periodic partial
increasing or declining of particles in the form of ladder function. The aim was to
enhance the overall performance of PSO. Their algorithm adjusts the swarm size
automatically according to the value of diversity of the swarm in ultimate time of current
ladder. For increasing the particles they use simple crossover and mutation operation of
GA and for decreasing, particles with lower fitness are removed.

In this paper, the PSO algorithm is modified (in this case it is called as modified PSO
i.e., MPSO), where at the time of generation of each particle, a lifetime is assigned
depending upon its fitness. Fitness of a particle depends on the objective function value
due to it. After completion of a generation (iteration), if no movement is made by the

 80 P. Guchhait and M.K. Maiti

particle, its age is increased by unity. When age exceeds lifetime, particles are discarded
from the swarm at the beginning of every iteration. It avoids the local convergence of the
algorithm. At the time of generation of initial swarm, diversity in the swarm is
maintained using information entropy theory. Every time a new particle Xi is generated,
the entropy between this one and previously generated individuals is calculated. If this
information quantity is higher than a threshold ET, fixed at the beginning, Xi is included
in the swarm otherwise Xi is again generated until diversity exceeds the threshold ET.
This method induces a good distribution of initial swarm. Diversity in the swarm is also
checked after a fixed number of generations called period. After each period, swarm size
may change depending on the diversity of the swarm. If diversity level drops threshold
level ET, some new (child) particles are included in the swarm. Child particles are
obtained using fuzzy lifetime-based crossover and mutation operations on the swarm.
Similarly, if the diversity exceeds predefined upper limit, some particles are discarded.
For crossover operation particles are classified into young, middle age and old (in fuzzy
sense) according to their age and lifetime. Following comparison of fuzzy numbers using
possibility theory (cf., Appendix A), here crossover probability is measured as a function
of parent’s age interval (a fuzzy rule base on parents age limit is also used for this
purpose). In this MPSO, a subset of better child particles are included with the parent
swarm for next period and maximum size of this subset is a percentage of the size of its
parent set. To control memory overflow at the runtime of the algorithm, an upper limit of
swarm size is imposed (Maxsize). Similarly, a lower limit (Minsize) of swarm size is
maintained. Algorithm terminates when difference between maximum fitness (Maxfit)
and average fitness (Avgfit) of the swarm becomes negligible (less than a predefined
small value ε). Here inertia weight (w) and probability of mutation (pm) are initially very
high and follows a decreasing law in function of the generation number. General structure
of this MPSO for a maximization problem is presented below. The same algorithm can be
used for minimisation problem, by negating the objective value or changing the
inequalities of step 22 and step 23 of the algorithm.

In the algorithm Bl and Br are lower and upper limit vector respectively of variation of
search space. Check constraint (Xi) checks whether the solution Xi satisfies the constraints
of the problem or not. If Xi satisfies the constraints of the problem, it returns a value 1
otherwise return 0.

Proposed MPSO algorithm

1 Initialize period length T, ET, Maxsize, Minsize, ε, ω and pm
2 Set iteration counter t = 1 and randomly generate initial swarm S(t), where diversity in

the swarm is maintained using entropy originating from information theory.
3 Find lifetime and set velocity Vi(t) of each particles Xi(t) of initial swarm S(t).
4 Do
5 For j = 1: T do
6 For i = 1: pop_size do
7 Vi(t + 1) = ωVi(t) + c1r1(Xpbesti(t) − Xi(t)) + c2r2(Xgbest(t) − Xi(t))
8 If (Vi(t + 1) > Vmax) then set Vi(t + 1) = Vmax
9 If (Vi(t + 1) < −Vmax) then set Vi(t + 1) = −Vmax
10 Xi(t + 1) = Xi(t) + Vi(t + 1)
11 If (Xi(t + 1) > Br) then set Xi(t + 1) = Br

 A fuzzy lifetime-based PSO with varying swarm size 81

12 If (Xi(t + 1) < Bl) then set Xi(t + 1) = Bl
13 If check_constraint (Xi(t + 1)) = 0
14 Increase age of Xi(t) by 1
15 If age of Xi(t) > life_time
16 Remove Xi(t) from swarm.
17 else
18 Set Xi(t + 1) = Xi(t), Vi(t + 1) = Vi(t)
19 End If
20 Else
21 Set age of Xi(t + 1) = 0
22 if f(Xi(t + 1)) > f(Xpbesti) then set Xpbesti = Xi(t + 1)
23 if f(Xi(t + 1)) > f(Xgbest) then set Xgbest = Xi(t + 1)
24 End If
25 End For
26 Set t = t + 1
27 End For
28 Set Div = diversity of S(t).
29 If Div < ET
30 Include child particles in S(t) using fuzzy crossover and mutation such that its size

does not exceeds Maxsize.
31 End If
32 If Div > ET
33 Remove some particles from S(t) using q-tournament method Chen and Zhao

(2009) such that its size does not drops Minsize.
34 End If
35 Decrease value of w and pm.
36 Set Maxfit = Maximum fitness in S(t) and Avgfit = Average fitness of S(t).
37 While (Maxfit – Avgfit ≥ α)
38 Output: Best particle of S(t)
39 End Algorithm

Algorithm for inclusion of particles into S(t):

1 For each pair of particles in S(t) do
2 Determine probability of crossover cp� or the selected pair of parents using fuzzy

rule-base and possibility theory.
3 Perform crossover with probability .cp�

4 If crossover occurs and child particles satisfy the constraints of the problem store
them into offspring set.

5 End For
6 For each particles Xi(t) in S(t) do
7 Perform mutation with probability pm

 82 P. Guchhait and M.K. Maiti

8 If mutation occurs and child particle satisfies the constraints of the problem store
them into offspring set.

9 End For
10 Rank the particles of offspring set using q-tournament method (Chen and Zhao, 2009).
11 Select a percent of better offsprings from the offspring set and insert into S(t), such that

maximum size of S(t) does not exceed Maxsize.
12 Remove all offsprings from the offspring set.
13 End Algorithm

4.1 Different steps of MPSO algorithm

a Representation of particles: a ‘n dimensional real vector’, Xi = (xi1, xi2,…, xin), is
used to represent ith solution, where xi1, xi2,…, xin represent n decision variables of
the decision-making problem under consideration. Xi is called ith chromosome and xij
is called jth gene of ith chromosome.

b Initialisation: N solutions Xi = (xi1, xi2,…,xin), i = 1, 2,…,N are randomly generated
by random number generator within the boundaries of each variable [Bjl, Bjr],
j = 1, 2,…,n. Initialise (S(1)) sub-function is used for this purpose.

c Constraint checking: for constrained optimisation problems, at the time of generation
of each individuals Xi of S(1), constraints are checked using a separate sub-function
check_constraint(Xi), which returns 1 if Xi satisfies the constraints otherwise returns
0. If check_constraint(Xi) = 1, then Xi is included in S(1) otherwise Xi is again
generated and it continues until constraints are satisfied.

d Diversity preservation: at the time of generation of S(1) diversity is maintained using
entropy originating from information theory. Following steps are used for this
purpose.
1 Probability, prjk, that the value of the ith variable of the jth particle is different

from the ith variable of the kth particle is calculated using the formula

1 ji ki
jk

ir il

x x
pr

B B
−

= −
−

where [Bil, Bir] is the variation domain of the ith variable.
2 Entropy of the ith variable, Ei(M), i = 1, 2,…,n is calculated using the formula.

1

1 1

() log
M M

i jk jk
j k j

E M pr pr
−

= = +

= −∑ ∑

where M is the size of the swarm.
3 Average entropy of the current swarm is calculated by the formula

1

1

() ()
n

in
i

E M E M
=

= ∑

 A fuzzy lifetime-based PSO with varying swarm size 83

Incorporating the above three steps a separate sub-function check_diversity(Xi) is
developed. Every time a new particle Xi is generated, the entropy between this
one and previously generated individuals is calculated. If this information
quantity is higher than a threshold, ET, fixed at the beginning, Xi is included in the
swarm otherwise Xi is again generated until diversity exceeds the threshold, ET.
This method induces a good distribution of initial swarm.

e Determination of fitness and lifetime: fitness Z(Xi) of the particle Xi is determined
using the following formula:

() ()
()

 for maximization problem, and
 for minimizationproblem

i i

i

Z X f X
L f X

=

= −
 (28)

where f(x) is objective function and L is a sufficiently large positive real to make
fitness positive. Following Michalewicz (1992), at the time of birth life-time of Xi is
computed using the following formula:

() () ()()Minfit
If Avgfit , lifetime Minlt

Avgfit Minfit
i

i i
K Z X

Z X X
−

≥ = +
−

() () ()()AvgfitMinlt MaxltIf Avgfit , lifetime
2 Maxfit Avgfit

i
i i

K Z X
Z X X

−+
< = +

−

where Maxlt and Minlt are maximum and minimum allowed lifetime of a particle,
K = (Maxlt − Minlt)/2. Maxfit, Avgfit, Minfit represent the best, average and worst
fitness of the current population. To optimise different TFs it is assumed that
Maxlt = 7 and Minlt = 1, N = 10. According to the age, a particle can belongs to any
one of age intervals – young, middle-age or old, whose membership functions are
presented in Figure 3.

f Crossover:
• Determination of probability of crossover () :cp� probability of crossover ,cp�

for a pair of parents (Xi, Xj) is determined as below:
1 At first age intervals (young, middle-age, old) of Xi and Xj are determined by

making possibility measure of fuzzy numbers – young, middle-age, old with
respect to their age using Lemma 4 (cf., Appendix A). If age of Xi is ai, then
possibility measures of fuzzy numbers young, middle-age and old with
respect to ai are calculated. Then age interval having maximum possibility
measure is taken as age interval of Xi. Similarly, age interval of Xj is
determined,

2 After determination of age intervals of the parents their crossover probability
()cp� is determined as a linguistic variable (low, medium or high) using a
fuzzy rule-base as presented in Table 1. Membership function of these
linguistic variables is presented in Figure 4.

 84 P. Guchhait and M.K. Maiti

3 Crossover process: for each pair of parent solutions Xi, Xj a random number
c is generated from the range [0, 1] and if nes()cc p β< >� (cf., Lemma 1 in
Appendix A), crossover operation is made on Xi, Xj, where β (0 < β < 1) is a
predefined necessity level. For the proposed model it is assumed that β = 0.5.
To made crossover operation on each pair of coupled solutions Xi, Xj a
random number c1 is generated from the range [0, 1] and their offsprings Y1
and Y2 are determined by the formula:

() ()1 1 1 2 1 11 , 1 i j j iY c X c X Y c X c X= + − = + −

For constrained optimisation problems, if a child solution satisfies the constraints of
the problem then it is included in the offspring set otherwise it is not included in the
offspring set.

g Mutation:
1 Selection for mutation: for each offspring generate a random number ‘r’ from

the range [0, 1].
If r < pm then the solution is taken for mutation, where pm is the probability of
mutation.

2 Mutation process: random mutation process is used for this purpose. According
to this process a randomly selected variable of the solution is replaced by its
regenerated value with its search boundary. So to mutate a solution X = (x1, x2,…, xn)
a random integer i in the range [1, n] has to be selected. Then replace xi by randomly
generated value within the boundary [Bil, Bir] of ith variable of X. New solution (if
satisfies constraints of the problem) included in the offspring set. Constraint
checking of a child solution Ci is made using check_constraint(Ci) function.

h Reduction process of ω and pm: let ω(0) and pm(0) is the initial value of ω and pm
respectively. Then the value of w and pm in Tth generation w(T) and pm(T) are
calculated by the following formulae:

ω(0) = ω (0)exp(–T/α1) and pm(T) = pm(0) exp(−T/α2), where α1 is calculated so that
the final value of ω is small (0.2 in our case). So

1
(0)Maxgen log ,

0.2
ωα ⎡ ⎤= ⎢ ⎥⎣ ⎦

where Maxgen is the expected number of generations that the GA can run for
convergence. Similarly, α2 is calculated so that the final value of pm is small enough
(10–2 in our case). So

1 2

(0)Maxgen log
10

mpα
−

⎡ ⎤= ⎢ ⎥⎣ ⎦

i Inclusion of particles in S(t):
• Following Chen and Zhao (2009) maximum number of offsprings to be included

in S(t) is NI = N(t) × λ × Div(S(t)), where N(t) represents the current size of S(t),
Div(S(t)) is the diversity of S(t) and λ is adding factor. The common value of λ
belongs to the interval [0.2, 0.3].

 A fuzzy lifetime-based PSO with varying swarm size 85

• Particles in the offspring set are at first ranked using q-tournament process
(Chen and Zhao, 2009).

• Particles in the offspring set are arranged in descending order of their rank.
• First NI particles are included in S(t). After inclusion, excess particles are

removed if the number of particles in S(t) exceeds Maxsize.

(j) Deletion of particles from S(t):
• Again, following Chen and Zhao (2009), maximum number of offsprings to be

deleted from S(t) is ND = N(t) × η × Div(S(t)), where N(t) is the current size of
S(t), Div(S(t)) is the diversity of S(t) and η is deletion factor, whose value is less
than λ. The common value belongs to the interval [0.1, 0.2].

• Particles in S(t) are at first ranked using the q-tournament process (Chen and
Zhao, 2009).

• S(t) is arranged in descending order of rank of particles.
• Last min{ND, O(S(t))−Minsize} particles are deleted from S(t), so that after

deletion, the number of particles in S(t) does not drops below Minsize.

k Termination condition: algorithm terminates when difference between maximum
fitness (Maxfit) of particle, i.e., fitness of the best solution of the swarm and average
fitness (Avgfit) of the swarm becomes negligible.

l Implementation: with the above function and values the algorithm is implemented
using C-programming language in a personal computer consist of Intel 3.07 GHZ
processor, 448 MB RAM and Microsoft Windows XP operating system.

m Convergence of the MPSO algorithm: a set of TFs are used to test the efficiency of
the proposed algorithm MPSO. It is observed that results obtained by MPSO for
different TFs are equal to the global optimum in most of the cases and in other cases
solutions are all most near to global optima. This implies that this algorithm can be
used as decision-making tool for different constrained/unconstrained optimisation
problems.

Figure 3 Membership functions of age intervals

 86 P. Guchhait and M.K. Maiti

Figure 4 Membership functions of crossover probabilities

Table 1 Fuzzy rule-base for crossover probability

Parent 2
Parent 1

Young Middle-age Old
Young Low Medium Low
Middle-age Medium High Medium
Old Low Medium Low

4.2 MPSO for fuzzy objective function

A general single-objective mathematical programming problem with fuzzy objective
function can be written as:

Maximize (,), subject to (X) 0, 1, 2, , ,if X ξ g i m≤ = …� (29)

where X = (x1, x2,…,xn) is a decision vector, ξ� is a vector of fuzzy parameters, (,)f X ξ� �
is the return function and gi(X) are constraints.

The above MPSO algorithm can be used to determine optimal decision of the above
problem. To deal with such a problem at first a fuzzy goal ()gF� of the objective function

()f� is determined using the above MPSO algorithm. Then to make decision of the
fuzzy optimisation problem, possibility/necessity (optimistic/pessimistic sense) (cf.,
Appendix A) of the fuzzy objective ()f� with respect to the fuzzy goal ()gF� is taken as
fitness of a particle (solution) of the swarm. The process is discussed below. Other
functions and values are same as discussed above.

• Determination of fuzzy goal: fuzzy goal gF� � of the fuzzy objective function

(,)f X ξ� � is considered as a linear fuzzy number (LFN) (Fg1, Fg2) and values of
Fg1, Fg2 can be determined in different ways. Here the following formulae are
proposed and are used for numerical illustrations for the fuzzy models. In the
formula S denotes the feasible search space of the problem.

() ()1 2
0 0 0 0

0, 0 0, 0inf inf , supg g
x S ξ ξ x S ξ ξ

F f x ξ F spu f x ξ
∈ ∈ ∈ ∈

= =
� �
� �

• Fitness evaluation: for optimistic decision maker (DM),

 A fuzzy lifetime-based PSO with varying swarm size 87

()
(,) gf X ξ

F∏ � �
�

can be taken as fitness of a solution X and for pessimistic DM, (,) ()gf X ξN F� � � can

be taken as fitness. If analytical form of membership function of (,)f X ξ� �
(obtained by the formula defined in equation (34) is a TFN (F1(X), F2(X), F3(X)),
then Lemma 2 gives

() 1 1
(,)

,g
f X ξ

F U E=∏ � �
�

where U1 = F3(X) − Fg1 and E1 = F3(X) − F2(X) + Fg2 − Fg1. As MPSO search
plays a role to maximise the fitness of the chromosomes in the swarm, so
maximisation of

()
(,) gf X ξ

F∏ � �
�

implies maximisation of F2(X) (most feasible equivalent of (,)f X ξ� � and F3(X)

(least feasible equivalent of (,)f X ξ� � together. Again,

()
(,)

1gf X ξ
F =∏ � �
�

implies F2(x) ≥ Fg2, i.e., most feasible objective value achieves the highest level
of profit goal (Fg2). Thus if DM is optimistic and allows some risk, he/she will
find the fitness of a solution depending on the possibility measure. On the other
hand, Lemma 3gives 2 2(,) () / ,gf X ξN F U E=� � � where U2 = F2(X) − Fg1 and

E2 = F2(X) − F1(X) + Fg2 − Fg1. So in this case maximisation of (,) ()gf X ξN F� � �

implies maximisation of F1(X) (worst possible equivalent of (,)f X ξ� � and F2(X)

most feasible equivalent of (,)f X ξ� � together. (,) () 1gf X ξN F =� � � implies F1(X) ≥

Fg2, i.e., worst possible objective value achieves the highest level of profit goal
(Fg2). If DM is pessimistic and does not allow any risk, he/she will determine the
fitness of solution using necessity measure approach. Set Z(X) as fitness of X.

5 Numerical illustration

5.1 Testing of algorithm

Here, different models are solved using the proposed MPSO algorithm. Different
parameter values of the MPSO algorithm used for this purpose are given below:

Number of variables in a solution n = 5. A five dimensional real vector X = (x1, x2, x3,
x4, x5) is used to represent a solution. In which x1 represents T, x2 represents N, x3
represents M, x4 represents m1 and x5 represents m2. Integral parts of x2 and x3 are taken as
values of N and M respectively. Minimum swarm size Minsize = 10, Maximum swarm
size Maxsize = 100. Initial value of probability of mutation pm(0) = 0.9 and inertia weight
w(0) = 0.9. Lower limit of inertia weight=0.2. Value of ‘q’ in q-tournament method is 5.
Expected value of maximum number of generation to converge the MPSO, Maxgen =

 88 P. Guchhait and M.K. Maiti

200. MPSO algorithm is run for the TFs (cf., Appendix C) using different seeds of
random number generators for 40 times each and number of success of finding optimal
solutions for each function are noted. If optimal solution is found in a run of the heuristic
algorithm using a seed, we say that the run is successful. % of successful runs for
different TFs due to that technique is listed in Table 2. It is observed that the performance
of MPSO is good enough.
Table 2 Results of TFs following the proposed MPSO algorithm

TF Results obtained Maximum iterations
required for convergence

% of success
for 40 runs

TF1 ES(3.1432, 3.1438) = −0.9998 164 96%
TF2 MZ(2.2025, 1.5744) = −1.8004 180 92%
TF3 F(1.0001, 0.9998) = 1.0002 159 98%
TF4 F2(2.0481, 0.0001) = −205.8479 176 98%
TF5 SH(x_1) = −186.7306 176 94%
TF6 RC(x_2) = 0.39773 98 96%
TF7 F2(1.0013, 0.9998) = 0.0 178 94%
TF7 F4(0.9996, 0.9998, 0.9997, 0.9996) = 0.0 Does not converge for all

runs
90%

TF8 BH(0.0000, 0.0001) = 0.0 125 98%
TF9 F(0.5, 0.2499) = 0.25 102 98%
TF10 Z3(0.0000, 0.0001, 0.0001) = 0.0 144 98%

Notes: For TF-5, 18 global minima are x_1 = [(–0.8004,–1.4262), (–1.4252, –0.8003),
(4.8584, –7.0835), (–7.0836, 4.8579), (–7.7083, –7.0835), (–7.0839, –7.7083),
(5.4826, 4.8582), (4.8581, 5.4828), (–1.4254, –7.0839), (–7.0835, –1.4253),
(4.8583, –0.8001), (–0.8005, 4.8583) (5.4827, –7.7082), (–7.7086, 5.4830),
(–7.7085, –0.8001), (–0.8001, –7.7086), (5.4821, –1.4250), (–1.4252, 5.4823)].
For TF–6, three global minima are x_2 = [(–3.1423, 12.2504), (3.1431, 2.2517),
(9.4253, 2.2474)].

Figure 5 pm(0) vs. % of success (see online version for colours)

 A fuzzy lifetime-based PSO with varying swarm size 89

Figure 6 Threshold vs. % of success (see online version for colours)

Performance of the proposed MPSO algorithm is improved by setting the appropriate
values of the parameters of the algorithm against the above mentioned TFs (Here, TF-1 to
TF-5 are taken). For different values of initial probability of mutation pm(0) and threshold
ET, performance of the proposed heuristic algorithm for these TFs are evaluated and
plotted graphically (cf., Figure 5 and Figure 6). Figure 5 and Figure 6 reflected that the %
of success of the MPSO is good enough for pm(0) = 0.9 and ET = 0.12 taking reasonable
number of iterations for convergence. This study is made to fix-up the values of pm(0)
and ET for which optimum results can be found in most of the runs of the algorithm and
numerical experiments of the proposed models are made with these values of pm(0) and
ET.

5.2 Numerical illustration of the proposed model

5.2.1 Results of the model with crisp objective function

The following parameter values are used to illustrate the model:

0

0 1 1 0 1 2

2

2,500, 1,000, 2,000, 0.25, 500, 0.7, 1.5,
0.5, 1.25, 0.90, 0.4, 30, 35, 0.5, 2.5,
20, 1 and upper limit of is 2.

r

H H

K Q A B C R c
L L c c γ
m σ m

α β β
= = = = = = =
= = = = = = = =
= =

As discussed earlier, to compare the results, the present crisp model (Section 3.4) is
solved following the two algorithms, i.e., MPSO and GA (presented by Guchhait et al.,
2010). For the above parametric values, the optimum cycle length (T), the total number
of cycles (N), the number of cycles for which price discount is offered (M), the mark-ups
of selling price (m1 and m2) and the profit (Z) are obtained by both the methods and
presented. Obtained results for different values of ‘α’ (degree of probability of satisfying
the constraint on random planning horizon) are presented in Table 3.

 90 P. Guchhait and M.K. Maiti

Table 3 Results of crisp model obtained by MPSO and GA

MPSO GA

α T N M m1 m2 Z α T N M m1 m2 Z

0.90 1.8715 10 6 1.6509 2 618.10 0.90 1.8675 10 6 1.6561 2 617.64
0.91 1.8655 10 6 1.6516 2 615.23 0.91 1.8611 10 6 1.6546 2 614.27
0.92 1.8595 10 6 1.6575 2 612.41 0.92 1.8567 10 6 1.6642 2 611.55
0.93 1.8525 10 7 1.6807 2 609.25 0.93 1.8541 10 7 1.6723 2 608.26
0.94 1.8445 10 7 1.6808 2 605.34 0.94 1.8421 10 7 1.6733 2 604.68

As expected, profit decreases with increase of ‘α’. In fact, increase of ‘α’ decreases the
effective length of planning horizon, which in turn decreases the profit. Also, it is
observed that m1 increases with ‘α’ to keep the profit high. In fact, increase of m1
decreases the demand which decreases the profit, but m1 directly increases the profit. As a
result, though increase of m1 decreases demand, increase in profit due to increase in m1
dominated decrease in profit due to decrease in demand. So, the resultant effect keeps the
total profit high. Again, from this table it is observed that after the certain increasing
value of ‘α’, the number of cycles for price discount is more than the previous one, which
in turn decreases the profit also. Similar trends of the results are observed for both the
algorithms, but, the profit obtained by MPSO is better than that of GA. Of course, these
better results do not contribute much in real sense for the present set of parametric values
of the model. The differences are in the decimal places. As our problem is to maximise
the profit, so we can say that the proposed algorithm performed better compared to the
GA.
Table 4 Results of crisp model obtained by MPSO and GA

MPSO GA
R T N M m1 m2 Z R T N M m1 m2 Z
0.71 1.8715 10 6 1.6580 2 613.99 0.71 1.8717 10 6 1.6572 2 613.03
0.72 1.8715 10 6 1.6571 2 609.99 0.72 1.8716 10 6 1.6567 2 609.11
0.73 1.8715 10 7 1.6806 2 605.72 0.73 1.8718 10 7 1.6630 2 604.87
0.74 1.8715 10 7 1.6799 2 601.38 0.74 1.8716 10 7 1.6753 2 600.22
0.75 1.8715 10 7 1.6796 2 596.75 0.75 1.8717 10 7 1.6649 2 595.02

Again, for the above parameter values, results are also obtained by both the algorithms
MPSO and GA for different values of ‘R’ and presented in Table 4. It is observed that the
profit decreases with ‘R’. It happens because increase of ‘R’ decreases the effect of price
discount on demand, i.e., demand decreases with the increase of ‘R’. As demand of the
item decreases; the profit decreases automatically. It is also observed from the Table 4
that, to keep the demand high (with the increase of ‘R’), either m1 decreases or M
increases. Because, increasing demand reflects more profit. As the proposed model is to
maximise the profit so, all these observations agree with reality. Here also, it is observed
that the profit obtained by MPSO is more than that of GA.

 A fuzzy lifetime-based PSO with varying swarm size 91

5.2.2 Results of the model with fuzzy objective function

To illustrate the fuzzy model, the setup cost coefficients 0 1,c c� � and the holding
cost hc� are considered as TFNs, i.e., 0 (30, 35, 40),c =� 1 (35, 40, 45)c =� and

(0.45, 0.5, 0.55)hc =� respectively. Other parameter values are same as in the crisp
model. From the previous results (i.e., the results of crisp model as well as TFs) it can be
concluded that the MPSO algorithm performed better compared to the other. For this
reason the fuzzy model is solved using only MPSO algorithm. For the assumed parameter
values, calculated value of Fg1 = 447 and Fg2 = 650.16. The results are obtained by
MPSO algorithm for the fuzzy model (25) using both the measure of fuzzy number (i.e.,
possibility and necessity measures) and presented in Tables 5 and 6 respectively. It is
observed from these tables (Tables 5 and 6) that maximum possible profit due to
possibility measure (Z3 = 649.25) is more than that of the maximum profit due to
necessity measure (Z3 = 647.65). But, there is some risk in possibility measure approach.
Because, in that case minimum assured profit (Z1 = 444.01) is less than that of the
obtained following necessity measure (Z1 = 445.29). It happens because possibility
measure approach is followed by optimistic DMs. Using this approach actually Z2 and Z3
are optimised [cf., §4.1(2)]. On the other hand necessity measure approach is followed by
pessimistic DMs. Using this approach, actually Z1 and Z2 are optimised [cf., §4.1(2)]. As
a result, Z3 in necessity measure approach may be less compared to the value of Z3 in
possibility measure approach. In this case, minimum possible profit (i.e., Z1 in necessity
measure) is optimised, so DM is free from risk.
Table 5 Results of fuzzy model following possibility measure for fitness

Algorithm T N M m1 m2 Z1 Z2 Z3
MPSO 2.0794 9 6 1.6774 2 444.01 546.63 649.25

Table 6 Results of fuzzy model following necessity measure for fitness

Algorithm T N M m1 m2 Z1 Z2 Z3
MPSO 2.0794 9 5 1.6627 2 445.29 546.47 647.65

6 Managerial implications and insights

In the present investigation, several cases of the models with the credit period are
formulated with respect to retailer and presented. Manager of a retail shop can take the
managerial decisions depending upon the actual prevailing situation which fits best with
the given models for maximum profit.

1 This model suggests to a manager of a sector how to determine the number of cycles
for which price discount is offered so that the profit can be maximised.

2 Results of the models with crisp and imprecise parameters are presented. Manager of
a retail shop can choose their appropriate model depending upon the nature of
parameters.

 92 P. Guchhait and M.K. Maiti

7 Conclusions

In this paper, a fuzzy lifetime-based MPSO algorithm is proposed which is efficient in
solving constrained optimisation problem with crisp as well as fuzzy objective. The main
features of the developed algorithm are summarised below:

• at the time of birth of a swarm, diversity is maintained using information entropy
theory

• initial value of probability of mutation pm(0) and inertia weight w(0) are taken very
high and gradually decreases (towards a minimum limiting value) with increase of
iteration counter

• crossover operations are made on the particles whose movements are not made using
normal PSO functions

• moreover, if no movement of a particle is made during a finite number of generation
(i.e., if age exceeds the lifetime), it is discarded from the swarm.

These realistic features make the algorithm more powerful in searching the global optima
(if it exists). Performance of the MPSO algorithm (tested against a list of TFs) concludes
that it is good enough. As the developed algorithm is more efficient, so that it can be used
to solve different decision-making problems in different fields of science and technology.
Here also, a production inventory model is developed incorporating the effect of stock
and price on demand when price discount is offered to the customers for few cycles.
Moreover, learning effects on production cost and setup cost are incorporated in this EPQ
model. The aim of adaptation of the model is fourfold.

• study the effect of both the stock and price on demand when price discount is offered
to the customers

• incorporate employees learning effects on production and set-up cost in a finite rate
production model

• introduce lifetime of a product as random in nature in a EPQ model

• propose a MPSO algorithm which can deals with crisp as well as fuzzy objective
function

Here, in the fuzzy model, production cost coefficients are not considered as fuzzy. It is
due to the fact that if production cost is fuzzy then demand becomes fuzzy. If demand is
fuzzy then cycle length will vary from cycle to cycle, as well as due to the impreciseness
of demand, production quantities for different cycles may finish before the end of some
cycles as well as may excess at the end of other cycles. So it is difficult to find optimal
decision in that case following this approach. On the other hand, there are also some
limitations in this algorithm which are given below.

• solutions obtained in this approach are normally near optimal, not exact

• near optimal solutions may not occur in some runs of the algorithm.

Further research work can be made on the optimisation problem with other environments
like – rough, fuzzy-rough, fuzzy-random etc. Also, this model can be extended to a
‘multi-item inventory model’ by considering more than one item in the system. Again

 A fuzzy lifetime-based PSO with varying swarm size 93

due to generalised solution methodology, this approach can be applied to solve other
inventory control problems along with the problems in other disciplines.

References
Abad, P.L. (2000) ‘Optimal lot-size for a perishable good under conditions of finite production

and partial backordering and lost sale’, Computers & Industrial Engineering, Vol. 38, No. 4,
pp.457–465.

Bessaou, M. and Siarry, P. (2001) ‘A genetic algorithm with real-value coding to optimize
multimodal continuous function’, Structural and Multi-Disciplinary Optimization, Vol. 23,
No. 1, pp.63–74.

Boeringer, D.W. and Werner, D.H. (2004) ‘Particle swarm optimization versus genetic algorithms
for phased array synthesis’, IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3,
pp.771–779.

Chakraborty, S., Pal, M. and Nayak, P.K. (2013) ‘Intuitionistic fuzzy optimization technique for
Pareto optimal solution of manufacturing inventory models with shortages’, Eur. J. Oper.
Res., Vol. 228, No. 2, pp.381–387.

Charnes, A. and Cooper, W.W. (1959) ‘Chance constrained programming’, Management Science,
Vol. 6, No. 1, pp.73–79.

Chen, D. and Zhao, C. (2009) ‘Particle swarm optimization with adaptive population size and its
application’, Applied Soft Computing, Vol. 9, No. 1, pp.39–48.

Chung, K.J., Chu, P. and Lan, S.P. (2000) ‘A note on EOQ models for deteriorating items
under stock dependent selling rate’, European Journal of Operational Research, Vol. 124,
No. 3, pp.550–559.

De, S.K. and Sana, S.S. (2013) ‘Fuzzy order quantity inventory model with fuzzy shortage quantity
and fuzzy promotional index’, Economic Modelling, Vol. 31, pp.351–358.

De, S.K., Goswami, A. and Sana, S.S. (2014) ‘An interpolating by pass to Pareto optimality in
intuitionistic fuzzy technique for a EOQ model with time sensitive backlogging’, Applied
Mathematics and Computation, Vol. 230, No. 1, pp.664–674.

Dubois, D. and Prade, H. (1980) Fuzzy Sets and System – Theory and Application, Academic, New
York.

Eberhart, R.C. and Kennedy, J. (1995) ‘A new optimizer using particle swarm theory’, Proceedings
of the Sixth International Symposium on Micromachine and Human Science, pp.39–43.

Engelbrecht, A.P. (2005) Fundamentals of Computational Swarm Intelligence, 1st ed., John Wiley
and Sons, Ltd., November.

Esmin, A.A.A., Aoki, A. and Lambert-Torres, R.G. (2002) ‘Particle swarm optimization for
fuzzy membership functions optimization’, IEEE International Conference on System Man
Cybernatics, 6–9 October, Vol. 3, pp.6–9.

Feng, H.M. (2005) ‘Particle swarm optimization learning fuzzy systems design’, Proceedings of the
ICITA, 3rd International Conference on Information Technology and Applications, July,
Vol. 1, No. 47, pp.363–366.

Guchhait, P., Maiti, M.K. and Maiti, M. (2012) ‘Imperfect production policy of a breakable item
with variable breakability and demand in random planning horizon’, Int. J. Mathematics in
Operational Research, Vol. 4, No. 6, pp.622–637.

Guchhait, P., Maiti, M.K. and Maiti, M. (2013) ‘Two storage inventory model of a deteriorating
item with variable demand under partial credit period’, Applied Soft Computing, Vol. 13,
No. 1, pp.428–448.

Guchhait, P., Maiti, M.K. and Maiti, M., (2010) ‘Multi-item inventory model of breakable items
with stock-dependent demand under stock and time dependent breakability rate’, Computers &
Industrial Engineering, Vol. 59, No. 4, pp.911–920.

 94 P. Guchhait and M.K. Maiti

Gurnani, C. (1983) ‘Economic analysis of inventory systems’, International Journal of Production
Research, Vol. 21, No. 2, pp.261–277.

Kennedy, J. and Eberhart, R.C. (1995) ‘Particle swarm optimisation’, Proceedings of the IEEE
International Joint Conference on Neural Network, IEEE Press, Vol. 4, pp.1942–1948.

Kuo, W.H. and Yang, D.L. (2006) ‘Minimizing the total completion time in a single-machine
scheduling problem with a time-dependent learning effect’, European Journal of Operational
Research, Vol. 174, No. 2, pp.1184–1190.

Liang, J.J., Qin, A.K., Suganthan, P.N. and Baskar, S. (2006) ‘Comprehensive learning particle
swarm optimizer for global optimization of multimodal functions’, IEEE Transactions on
Evolutionary Computation, Vol. 10, No. 3, pp.281–295.

Liang, Y. and Zhou, F. (2011) ‘A two-warehouse inventory model for deteriorating items under
conditionally permissible delay in payment’, Applied Mathematical Modelling, Vol. 35, No. 5,
pp.2221–2231.

Liu, B. and Iwamura, K. (1998) ‘Chance constraint programming with fuzzy parameters’, Fuzzy
Sets and Systems, Vol. 94, No. 2, pp.227–237.

Maiti, M.K. and Maiti, M. (2006) ‘Fuzzy inventory model with two warehouses under possibility
constraints’, Fuzzy Sets and Systems, Vol. 157, No. 1, pp.52–73.

Michalewicz, Z. (1992) Genetic Algorithms + Data Structures = Evolution Programs, Springer,
Berlin.

Molamohamadi, Z., Ismail, N., Leman, Z. and Zulkifli, N. (2014) ‘Reviewing the literature of
inventory models under trade credit contact’, Discrete Dynamics in Nature and Society, 2014,
Article ID 975425, 19pp. [online] http://dx.doi.org/10.1155/2014/975425.

Moon, I. and Yun, W. (1993) ‘An economic order quantity model with random planning horizon’,
The Engineering Economist, Vol. 39, No. 1, pp.77–86.

Pal, S., Maiti, M.K. and Maiti, M. (2009) ‘An EPQ model with price discounted promotional
demand in an imprecise planning horizon via genetic algorithm’, Computers & Industrial
Engineering, Vol. 57, No. 1, pp.181–187.

Ratnaweera, A. Halgamuge, S.K. and Watson, H.C. (2004) ‘Self-organizing hierarchical particle
swarm optimizer with time-varying acceleration coefficients’, IEEE Transactions on
Evolutionary Computation, Vol. 8, No. 3, pp.240–255.

Roy, A., Maiti, M.K., Kar, S. and Maiti, M. (2007) ‘Two storage inventory model with fuzzy
deterioration over a random planning horizon’, Mathematical and Computer Modeling,
Vol. 46, Nos. 11–12, pp.1419–1433.

Sarkar, B., Sana, S.S. and Chaudhuri, K.S. (2011) ‘An imperfect production process for time
varying demand with inflation and time value of money – an EMQ model’, Expert System with
Applications, Vol. 38, No. 11, pp.13543–13548.

Shi, X.H., Liang, Y.C., Lee, H.P., Lu, C. and Wang, L.M. (2005) ‘An improved GA and a novel
PSOGA based hybrid algorithm[J]’, Inform. Process. Lett., Vol. 93, No. 5, pp.255–261.

Shi, Y. and Eberhart, R.C. (1998) ‘A modified swarm optimizer’, Proceedings of IEEE
International Conference on Evolutionary Computation, IEEE press, Piscataway, NJ,
pp.69–73.

Taleizadeh, A.A., Niaki, S.T.A., Aryanezhad, M.B. and Nima Shafii. (2013) ‘A hybrid method of
fuzzy simulation and genetic algorithm to optimize constrained inventory control systems with
stochastic replenishments and fuzzy demand’, Inf. Sci., Vol. 220, pp.425–441.

Ueno, G., Yasuda, K. and Iwasaki, N. (2005) ‘Robust adaptive particle swarm optimization’, IEEE
International Conference on System Man and Cybernatics, Vol. 4, No. 1012, pp.3915–3920.

Zadeh, L.A. (1978) ‘Fuzzy sets as a basis for a theory of possibility’, Fuzzy Sets and Systems,
Vol. 1, pp.3–28.

Zheng, Y.L., Ma, L.H. and Zhang, L.Y. (2003) ‘On the convergence analysis and parameter
selection in particle swarm optimization’, Proceedings of 2nd International Conference on
Machine Learning and Cybernetics, Xian, 25 October, Vol. 10, pp.1802–1807.

 A fuzzy lifetime-based PSO with varying swarm size 95

Appendix A

Let a� and b� be two fuzzy numbers with membership functions ()aμ x� and ()bμ x�
respectively. Then according to Dubois and Prade (1980), Liu and Iwamura (1998) and
Zadeh (1978),

(){ }(*) sup min (), () , , , *a bpos a b μ x μ y x y x y= ∈ℜ���� (30)

where the abbreviation pos represents possibility, * is any one of the relations >, <, =, ≤,
≥ and ℜ represents set of real numbers.

(*) 1 (*)nes a b pos a b= −� �� � (31)

where the abbreviation nes represents necessity.
Similarly, possibility and necessity measures of a� with respect to b� are denoted by
()b a∏ � � and ()bN a� � respectively and are defined as

(){ }() sup min (), () , ,ab ba μ x μ x x∏ = ∈ℜ� ��� (32)

(){ }() min sup (), 1 () , ,ab bN a μ x μ x x= − ∈ℜ� ��� (33)

If ,a b ⊆ ℜ�� and (,)c f a b= �� � where :f ℜ×ℜ→ℜ is a binary operation then
membership function cμ � of c� is defined as Dubois and Prade (1980)

(){ }For each , () sup min (), () , , , and (,)c a bz μ z μ x μ y x y z f x y∈ℜ = ∈ℜ =�� � (34)

LFN: a LFN ()1 2,a a a=� has two parameters a1, a2, where a1 < a2 and is characterised by
the membership function (),aμ x� given by

1

1
1 2

2 1

2

0 for

() for

1 for

a

x a
x aμ x a x a

a a
x a

≤⎧
⎪ −⎪= ≤ ≤⎨ −⎪
⎪ ≥⎩

� (35)

Triangular fuzzy number (TFN): a TFN 1 2 3(, ,)a a a a=� has three parameters a1, a2, a3,
where a1 < a2 < a3 and is characterised by the membership function (),aμ x� given by

1
1 2

2 1

3
2 3

3 2

for

() for

0 otherwise

a

x a a x a
a a

μ x a x a x a
a a

−⎧ ≤ ≤⎪ −⎪⎪= −⎨ ≤ ≤⎪ −
⎪
⎪⎩

� (36)

According to above definitions following lemmas can easily be derived.

Lemma 1: if 1 2 3(, ,)a a a a=� be a TFN with 0 < a1 and b is a crisp number then

 96 P. Guchhait and M.K. Maiti

() ()1 2 1 () 1nes a b iff b a a aα α> ≥ − − ≤ −�

Lemma 2: if 1 2 3(, ,)a a a a=� be a TFN and ()1 2,b b b=� be a LFN with 0 < a1 and 0 < b1
then

2 2

3 1
2 2 3 1

3 2 2 1

1 if

() if and

0 otherwise

a

a b
a bb a b a b

a a b b

≥⎧
⎪ −⎪∏ = ≤ >⎨ − + −⎪
⎪⎩

� �

Lemma 3: if 1 2 3(, ,)a a a a=� be a TFN and ()1 2,b b b=� be a LFN with 0 < a1 and 0 < b1
then

1 2

2 1
2 1 2 1

2 1 2 1

1 if

() if and

0 otherwise

a

a b
a bN b a b b a

a a b b

≥⎧
⎪ −⎪= > >⎨ − + −⎪
⎪⎩

� �

Lemma 4: if 1 2 3(, ,)a a a a=� be a TFN and b be a crisp number with 0 < a1 and 0 < b,

1
2 1

2 1

3
3 2

3 2

if

() () if

0 otherwise

a
a

b a a b a
a a

b N b a b a b a
a a

−⎧ ≥ ≥⎪ −⎪⎪= = −⎨ ≥ ≥⎪ −
⎪
⎪⎩

∏ ��

Appendix B

Optimisation with stochastic constraints (Charnes and Cooper, 1959): let x =(x1, x2,…,
xn)T, be the decision vector, y = (y1, y2,…,yN)T be the vector of N random variables with
known mean and standard deviation, where y1, y2,…,yN represents N parameters of the
problem, then a stochastic nonlinear programming problem (SNLP) can be stated in
standard form as follows:

()

1 2Find (, ,)
which minimize/maximize (,)
subject to (,) 0 (1, ,)
where ((,) 0) representsprobability of the event (,)

T
n

r r

r r

x x x x
f x y
P φ x y p r m

P φ x y φ x y

=

≥ ≥ =

≥

…

…
 (37)

According to Charnes and Cooper (1959), if all yi(i = 1,2,…,N) follow independent
normal distribution, the stochastic problem stated above is equivalent to following crisp
nonlinear programming problem.

 A fuzzy lifetime-based PSO with varying swarm size 97

()

1 2

1
2

2

Find (, ,...)
which minimize/maximize (,)

,
subject to 0 (1, ,)

where and are mean and standard deviation of (,)respectively.

1Also, is given by
2

i

r

T
n

r
r r y

i

r φ r

r r

x x x x
f x y

φ x y
φ ε σ r m

y
φ σ φ x y

ε p
π

=

⎡ ⎤⎛ ⎞∂
− ≥ =⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

=

∑ …

2 /2
rε

te dt−

−∞
∫

 (38)

Appendix C

Following are the list of TFs which are used to test the efficiency of the proposed MPSO
algorithm. It is observed that results obtained by MPSO for different TFs are equal to the
global optimum in most of the cases and in other cases solutions are very near to global
optima. This implies that this algorithm can be used as decision-making tool for different
constrained/unconstrained optimisation problems.

TF-1 (taken from Bessaou and Siarry, 2001)

() () () () (){ }2 2
1 2 1 2 1 2

1 2

, cos cos exp ,

10 , 10.

ES x x x x x π x π

x x

⎡ ⎤= − × × − − + −⎣ ⎦
− ≤ ≤

This TF has one global minima at (x1, x2) = (π, π) and ES(π, π) = −1.

TF-2 (taken from Bessaou and Siarry, 2001)

() () ()
22

1 2 1 2, , , sin in(. , , , ,
m

n i i nMZ x x x x i x π π x x x π⎡ ⎤= − − ≤ ≤⎣ ⎦∑… …

where m = 10. For n = 2, it has one global minima at (x1, x2) = (2.25, 1.57) and
MZ(2.25, 1.57) =−1.80.

TF-3 (taken from Michalewicz, 1992):

() () ()1 2 1 22 2
2 2

1 2 1 21 2

Minimize , 2 1 ,

such that – 0, 2, 5 , 5.

F x x x x

x x x x x x

= − + −

+ >= + <= − <= <=

It has one global minima at (x1, x2) =(1, 1), and F(1, 1) = 1.

TF-4 (taken from Bessaou and Siarry, 2001):

() ()2
1 2 1 1 1 222(,) 100 1 , 2.048 , 2.048.F x x x x x x x= × − + − − ≤ ≤

It has one minima at (x1, x2) = (2.048, 0) and F2(2.048, 0) = −205.8480.

 98 P. Guchhait and M.K. Maiti

TF-5 (taken from Bessaou and Siarry, 2001):

() [] []
5 5

1 2 1 2 1 2
1 1

, cos (1) cos (1) , 10 , 10
j j

SH x x j j x j j j x j x x
= =

× + × + × × + × + − ≤ ≤∑ ∑

This problem has 760 local minima and 18 global minima. At global minima (x1,
x2), SH(x1, x2) = −186.7309.

TF-6 (taken from Bessaou and Siarry, 2001):

() () (){ } []{ }
()

2
2 2

1 2 2 1 1

1 1 2

, 5 4 . 5 6 10 1 1 (8)

 cos 10, 5 10, 0 15

RC x x x π x π x π

x x x

⎡ ⎤= − × + × − + × −⎣ ⎦
× + − ≤ ≤ ≤ ≤

This problem has three global minima at (x1, x2) = (–π, 12.275), (π, 2.275),
(9.42478, 2.475) and RC(x1, x2) = 0.397887 at any one of these minima.

TF-7 (taken from Bessaou and Siarry, 2001)

() () ()
1

2 22
1 2 1

1

1 2

Minimize , , , 100 1 ,

1 , , , 5.

n

n n j j j
j

n

F x x x x x x

x x x

−

+
=

⎡ ⎤= × − + −⎣ ⎦

− ≤ ≤

∑…

…

Two functions F2 and F4 are used. This problems has one global minima at (x1,
x2,…, xn) = (1, 1,…, 1) and Fn(1, 1,…,n) = 0.

TF-8 (taken from Bessaou and Siarry, 2001):

() () ()2 2
1 2 1 2 1 2 1 2, 2 0.3 cos 3 cos 4 0.3, 5 , 5BH x x x x πx πx x x= + × − × × + − ≤ ≤

This problem has one global minima at (x1, x2) = (0, 0) and BH(0, 0) = 0.

TF-9 (taken from Michalewicz, 1992):

() () ()22
1 2 2 1 1

2 2
1 1 2 1 22

Minimize , 100 1 ,

such that 0, 0, 0.5 0.5, 1.0 1.0

F x x x x x

x x x x x x

= × − + −

+ ≥ + ≥ − ≤ ≤ − ≤ ≤

It has one global minima at (x1, x2) = (0.5, 0.25), and F(0.5, 0.25) = 0.25.

TF-10 (taken from Bessaou and Siarry, 2001):

()
2 4

2
1 2

1 1 1

1 2

, , , 0.5 0.5 ,

5 , , , 5

n n n

n n j jj
j j j

n

Z x x x x x j x

x x x
= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + × + ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

− ≤ ≤

∑ ∑ ∑…

…

It has one global minima at (x1, x2,…, xn) = (0, 0,…, 0) and Zn(0, 0,…, 0) = 0.

