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Abstract: Nowadays, global navigation satellite systems (GNSSs) are used for 
many new applications that go further than the original goal of providing 
position, velocity and timing for land, maritime and air applications. In 
particular, GNSS receivers have been adopted as main navigation system for 
several low Earth orbits (LEOs) missions, increasing the autonomy of the 
hosting spacecraft, reducing the networking operation costs. Accordingly, they 
result in an attractive solution even for higher Earth orbits. However, although 
many studies have shown that GNSS observations can also be obtained at 
altitudes above the GNSS constellations by using high sensitivity receivers, the 
use of these signals is still challenging because of their very weak power and 
the poor relative geometry between the receiver and the transmitters. In this 
paper, we describe the implementation of an orbital filter specifically designed 
for moon missions, which aims to improve the navigation performance 
achievable when using GNSS observations. 

Keywords: global navigation satellite systems; GNSSs; highly elliptical orbit; 
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Kalman filter. 
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1 Introduction 

Improvements in signal processing techniques and deep sub-microns CMOS integrated 
circuits design have resulted in tremendous progresses in global navigation satellite 
system (GNSS) receiver technology and are now allowing its use for applications in very 
challenging environments, such as the space environment. Indeed, although not 
specifically designed for spacecrafts, GNSS is today widely used for attitude 
determination, time synchronisation, orbit determination, and absolute and relative 
position determination in low Earth orbits (LEOs), as its use can significantly reduce the 
burden and costs of the networking operations and increase the autonomy of the hosting 
spacecraft (Bauer et al., 2006). 

Promising experimental results presented in Powell et al. (1999) and Balbach et al. 
(1998) have demonstrated that by modifying the traditional signal processing techniques, 
GNSS can also be used in higher orbits such as medium Earth orbit (MEO) and high 
Earth orbit (HEO). More recent research studies have shown the interest of the scientific 
space community to investigate the potential use of GNSS as navigation system for lunar 
missions (Manzano-Jurado et al., 2014; Silva et al., 2013; Capuano et al., 2014a, 2014b; 
Palmerini et al., 2009). Being its service originally conceived for Earth applications, the 
GNSS transmitters point towards the Earth, making their transmitted signals very weak 
above the GNSS constellation. However, some of these first studies (see e.g.,  
Manzano-Jurado et al., 2014; Capuano et al., 2014a; Silva et al., 2013) have revealed that 
although weak, GNSS signals from the side lobes of the GNSS transmitters antennas or 
from the spillover of the main lobe can still be acquired and tracked successfully. 
Experimental demonstrations have been presented in Balbach et al. (1998) for HEO, 
while theoretical studies have been described in Capuano et al. (2014a) for higher orbits 
up to moon altitude. 



   

 

   

   
 

   

   

 

   

    GPS-based orbital filter to reach the moon 201    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

At the same time, such studies have also highlighted how coarse a GNSS standalone 
navigation solution at moon altitude can be. In particular, the higher the receiver is flying 
above the GNSS constellation, the weaker the GNSS received signals are (thus affecting 
the number of visible satellites and the pseudorange accuracy from the visible ones) and 
the larger the geometric dilution of precision (GDOP) is (resulting in lower positioning 
accuracy). 

However, if GNSS observations are filtered through an orbital dynamics 
mathematical model that is able to predict the observations themselves, the achievable 
navigation accuracy can be much higher. Such kind of data fusion is commonly known as 
‘orbital filter’. Several research papers describe the use of orbital filter for LEO, such as 
Zhou (2004), Chiaradia et al. (2000), Choi et al. (2010) and Habib (2013). 

In this paper, we propose to extend the use of orbital filtering for a moon mission and 
present the navigation performance achieved by using a global positioning system  
(GPS)-based orbital filter specifically designed for a moon transfer orbit (MTO). The 
analysis is carried out for two configurations of the filter: in the first one  
(‘position-based’), the measurement input of the filter are the least squares GPS positions, 
and velocity, while in the second one (‘range-based’), the measurement inputs are 
directly the pseudorange and pseudorange rates. In order to highlight the benefit of its 
use, the achieved orbital filter performance is compared to the ones that would be 
obtained in the same scenario by using a simple least square estimator of the GPS 
measurements. 

2 Reference lunar mission 

Table 1 reports the initial position and velocity of the receiver trajectory of the considered 
MTO that is accurately propagated by the PosApp software of our Spirent (2012) 
GSS8000 simulator. The same table also reports some characteristics assumed for the 
hosting spacecraft. The resulting trajectory takes into account gravitational effects from 
the Earth up to the 21st degree and 21st order, sun and moon gravity, solar radiation 
pressure (SRP) and atmospheric drag, and is represented by the blue portion of the MTO 
shown in Figure 1. 

Table 1 Initial conditions for the MTO and spacecraft characteristics 

Parameters Values 

ECI Initial position (km) [2395.52 –5298.28 –3022.82] 

ECI Initial velocity (km/s) [10.193.581.72] 

Departure date 2nd July 2005 00:34:18 

Mass of the spacecraft (kg) 1,000 

Reference surface (m2) 20 

Note: The position and velocity values are expressed in Earth centred inertial (ECI) 
frame. 
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Figure 1 Considered lunar mission: the MTO is the curve in light blue (image from STK)  
(see online version for colours) 

 

3 Signal assumptions and measurements model 

Realistic GPS L1 C/A power signals levels at the receiver position are also modelled by 
the PosApp software of Spirent, according to the GPS interface control document (Global 
Positioning System Directorate, 2013). In particular, PosApp has been set to simulate a 
GPS constellation made of 30 GPS satellites, allocated in six orbital planes. Besides, in 
order to model accurately the 3D antenna patterns of the GPS transmitters, we used the 
pattern from Block II-A as defined in Czopek and Shollenberger (1993) and provided by 
Spirent. 

Following our previous study of the GPS signals power levels during a MTO (see 
Capuano et al., 2014a, 2014b), an antenna gain of 10 dBi is assumed in order to be able to 
acquire and track signals down to –169 dBm using a –159 dBm sensitivity GPS receiver. 
In order to guarantee 10 dBi antenna gain during the whole trajectory a steerable antenna 
could be used (Litva, 1996) or more than one receiver antenna could be placed on 
different faces of the spacecraft, with at least one that points to the GPS satellites at all 
times as proposed in Palmerini et al. (2009). 

Table 2 summarises all the assumptions about the transmitted signals and their 
processing. Such assumptions respect the parameters settings of the WeakHEO receiver, 
a space borne receiver developed by the EPFL ESPLAB, for which the orbital filter 
described here has been designed. A short description of such receiver can be found in 
Capuano et al. (2014b). 

For our simulations, the pseudorange and pseudorange rate observables are modelled 
according to Kaplan and Hegarty (2006), respectively as 

( ) ( ) ( )2 22
sat u sat u sat uρ x x y y z z b noise= − + − + − + +  (3.1) 

( )ρ b noise= − ⋅ + +sat uv v a  (3.2) 
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where in equation (3.1): xsat, ysat, zsat denote the Earth centred inertial (ECI reference 
frame) position’s components of the GPS satellite that is transmitting the signal, xu, yu, zu 
are the user’s ECI position components, and b is the receiver’s clock offset. While in 
(3.2), vsat and vu are, respectively, the velocity vector of the transmitting GPS satellite and 
of the spacecraft, b  represents the clock’s drift, and a is the line-of-sight (LOS) unit 
vector from the user to the GPS satellite. The true positions and velocities of the GPS 
satellites and of the receiver, which are considered as reference in the simulations are 
provided by PosApp software. 
Table 2 Signal and processing assumption used for the study 

Parameters Values 
Processed signal GPS-L1 C/A 
Receiver sensitivity (dBm) –159 
Antenna gain (dBi) 10 
Chipping rate (Mchip/s) 1.023 
Code loop noise bandwidth (Hz) 0.5 
Early-to-late correlator spacing (chip) 0.1 
Coherent integration time (ms) 20 
Double-sided front end bandwidth (MHz) 26 
Front-end figure (dB) 2 
Effective antenna temperature (K) 130 

Note: The value of 26 MHz for the double-sided front end bandwidth is related to the 
front-end used for testing the WeakHEO receiver. 

What is called ‘noise’ has been modelled as the square root of the sum of the variance of 
several noise contributions. The corresponding assumed standard deviations for each 
contribution of the pseudorange noise errors are listed in Table 3. The values have been 
taken from Kaplan and Hegarty (2006), except for the ionospheric delay and receiver 
error which are explained below. 
Table 3 GPS C/A code error budget for space users 

Error source 1σ error(m) 

Broadcast clock 1.1 
Broadcast ephemeris 0.8 
Ionospheric delay 15 
Tropospheric delay 0.2 

Receiver noise 2 2 0.5(0.1 )tDLLσ+  

Multipath 0.2 

According to Kaplan and Hegarty (2006), a typical 1-sigma error due to ionospheric 
effects, averaged over the globe and over elevation angles, for a user on the Earth surface, 
is 7 m. Such value corresponds to the residual error after the ionosphere corrections are 
applied [according to the Klobuchar (1987) model]. However, we assume here a more 
conservative approximate value of 15 m to take into account the wider range of elevation 
angles encountered when the receiver is flying in the space above the GPS constellation. 
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Regarding the thermal noise code tracking jitter σtDLL, it has been modelled to take into 
account the strong dependence on the carrier to noise ratio C / N0. This ratio can reach 
very small values when the receiver is far away from the GPS constellation (getting 
closer to the moon altitude), thus inducing a much higher thermal noise code tracking 
jitter than on the Earth surface. Considering the binary phase shift keying (BPSK) 
modulation used for the GPA L1 C/A signal and a non-coherent early minus late power 
DLL discriminator used, the thermal noise code tracking jitter σtDLL can be written as 
(Betz and Kolodziejski, 2000): 

2

0 0

1 1 21 [ ]
12 (2 )

fe cn
tDLL

fe c fe c

B TBσ D chips
C CB T π B T T D
N N

⎡ ⎤⎛ ⎞ ⎡ ⎤≅ + − +⎢ ⎥⎜ ⎟ ⎢ ⎥−⎢ ⎥⎝ ⎠⎣ ⎦ −⎢ ⎥
⎣ ⎦

 (3.3) 

where Bn is the code loop noise bandwidth expressed in Hz; D is the early-to-late 
correlator spacing in unit of chips; T is the coherent integration time in seconds; Bfe is the 
double-sided front-end bandwidth in Hz; Rc = 1 / Tc is the chipping rate expressed in 
Hz/s; and C / N0 is the carrier to noise ratio. For the assumed front-end noise figure  
(2 dB) and effective antenna temperature (130 K), the carrier-to-noise ratio is given by 
(Van Diggelen, 2009): 

0/ 174rC N P= +  (3.4) 

where Pr is the received power, simulated by Spirent. 
Finally, the pseudorange rate is assumed to be computed from the Doppler 

measurements and its noise will thus be proportional to the Doppler rate noise. The 
Doppler rate noise has been modelled as Doppler tracking jitter according to Borio et al. 
(2010), as follows: 

0 0

1 11
/ 2 /

n
f

B radσ
T C N TC N s

⎛ ⎞ ⎡ ⎤= +⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
 (3.5) 

4 Stand-alone GPS accuracy 

As already described in Section 3, we have used the Spirent software PosApp to simulate 
the real positions and velocities of the receiver and of the GPS satellites as well as the 
signals power level at the receiver position. Such quantities have been used to model the 
GPS measurements obtained by a –159 dBm sensitivity GPS receiver during the whole 
trajectory. Figure 2 illustrates the standalone GPS 3D position accuracy obtained by 
processing the GPS pseudoranges through a least square estimator for the whole 
considered trajectory, while Figure 3 and Figure 4 show as a function of altitude the 
GDOP and pseudorange errors, respectively. From Figure 2, we note that the error 
increases with the altitude with peaks of more than 50 km and in the last 5 hours and  
45 minutes it has a standard deviation of about 6.7 km, which certainly does not satisfy 
the positioning accuracy requirements for a moon mission which are typically within  
1 km (3σ) (Woodward and Folta, 2009). 
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Figure 2 3D normalised positioning error, for GPS C/A, as function of the altitude (see online 
version for colours) 

 

Figure 3 GDOP as function of the altitude (see online version for colours) 

 

Figure 4 Error on pseudorange as function of the altitude (see online version for colours) 

 

The increasing trend of the error results essentially from two factors: the increasing 
GDOP value (see Figure 3) due to the more and more limited region of the field of view 
of the receiver where the GPS satellites are located; and the increasing pseudorange error 
(see Figure 4) due to the augmentation of the thermal noise code tracking jitter σtDLL 
which is due to the diminishing received signals power. Such performance curves 
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confirm what was reported in other research papers such as Capuano et al. (2014a), 
Palmerini et al. (2009), and Braasch and de Haag (2006). 

5 Implementation of the orbital filter 

5.1 Integration in the position domain and in the range domain 

In this study, we investigate and compare the performance of a GPS-based orbital filter 
for two different input configurations. The first one (denoted ‘position-based’) uses the 
standalone GPS least square position and velocity solution as input of the filter; the 
integration is done in the position-domain and can be considered as ‘loose integration’ 
between GPS and orbital forces model. The second one denoted as ‘range-based’, uses 
directly pseudorange and pseudorange rate measurements as input of the filter and the  
un-weighted least square algorithm is replaced by an eight-state Kalman filter that 
computes user’s position and velocity, and receiver’s clock offset and drift. In this latter 
case, we may talk about ‘tight integration’ between GPS and an orbital forces model, 
since it is done in the range-domain. 

In both configurations due to dissimilar error characteristics, the achievable accuracy 
is higher than the one obtainable using individually a GPS receiver or an orbital 
propagator. The position-domain integration includes a standalone GPS receiver that is 
still independent (fault tolerant system), thus, it is simpler and has a clearer approach 
since the measurements provided by the receiver are directly position and velocity 
obtained from pseudorange and pseudorange rate observations by means of a least square 
estimator. On the other side in such configuration, the GPS input cannot be used if less 
than four GPS satellites are available but it can provide a higher availability of the total 
system using the orbital propagator alone as interpolator between GPS observations. The 
range-domain integration is more complex and requires a less transparent approach but it 
provides higher availability of the total system because less than four GPS satellites can 
be used as useful observations to provide a navigation solution. In both configurations, 
the navigation solution can be used to provide an aiding to the GPS signal processing 
engine in order to improve its performance and thereby also improve the GPS solution’s 
availability. 

5.2 Extended Kalman filter 

The algorithm, which iteratively repeats itself, consists of two phases: the prediction of 
the measurements by using a system model that propagates the state and the update 
through the real measures. If a dynamic system is described by the set of nonlinear 
differential equations 

( ) ( , )x t f x t=  (5.1) 

where x is the state vector, the a priori state kx−  can be obtained by integrating the 
equations (5.1). This yields to (Groves, 2013): 

1
1

( , )
k

k k
k

x x f x t dt− +
−

−
= + ∫  (5.2) 
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with 1kx+−  that denotes the last state estimate. The uncertainties on the propagated state 
are described by the covariance matrix kP−  (Groves, 2013): 

( )1 1 1
Tk k

k kk k kP P Q− +
− − −= Φ ⋅ ⋅ Φ +  (5.3) 

In (5.3), Qk represents the covariance matrix of the error on the process, 1
k
k−Φ  is the state 

transition matrix obtained from (Groves, 2013) 
( )1 1

1
k k kk A t t

k e − −−
−Φ =  (5.4) 

where 

1

1 ( , )
k

k
x x

A f x t
x +

−

−
=

∂
=
∂

 (5.5) 

is the linearised system matrix about the a posteriori state vector estimate at time tk–1. 
In the update step, the propagated state vector is used to predict the measurements 

( ),k k kz h x t− −=  (5.6) 

where h(x, t) are the observation functions. These measures are supposed to be affected 
by a white Gaussian noise described by the covariance matrix Rk. The updated state 
vector can be computed from (Groves, 2013) 

( ) ( ) ( )( ),k k k k k kx t x t K z h x t+ − −= + ⋅ −  (5.7) 

( )k k kkP I K H P+ −= − ⋅  (5.8) 

kP+  is the covariance matrix of the error on the estimated state. The term Kk in (5.7) and 
(5.8) denotes the Kalman gain, it is given by the following expression (Groves, 2013): 

( ) 1T T
k k k k kk kK P H H P H R

−− −= ⋅ +  (5.9) 

with Hk that is the Jacobian matrix of the observation functions linearised about the 
propagated state. 

5.3 State vector 

The state vector x ∈ {xp, xr} contains the set of parameters describing the system. For the 
position-based orbital filter, the state vector xp contains the position and velocity 
components of the receiver, i.e., 

[ ]Tx y z u v w=px  (5.10) 

For the range-based orbital filter, the state vector xr is composed by eight elements: the 
position and velocity components of the receiver as well as the receiver’s clock offset b 
and drift ,b  i.e., 
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T
x y z b u v w b⎡ ⎤= ⎣ ⎦rx  (5.11) 

5.4 Measurement vector 

For the position-based orbital filter, the measurement vector z ∈ {zp, zr} can be written as: 

GPS

GPS

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

p
x

z
v

 (5.12) 

where xGPS and vGPS are respectively the position and velocity vectors computed through 
a least square estimator. 

For the range-based orbital filter, the measurement vector is: 

GPS

GPS

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

r
ρ

z
ρ

 (5.13) 

where ρGPS and GPSρ  are respectively the pseudoranges and pseudorange rates of the 
available GPS satellites. 

5.5 Process model 

In the Kalman filter estimation, measurements are fused with a mathematical model of 
the dynamics in order to obtain an optimal solution. During a MTO, a spacecraft is 
influenced by a wide set of perturbations that make its orbit different from the osculating 
orbit. Depending on the altitude, each perturbation can have a weaker or stronger effect 
on the spacecraft dynamics. For instance, the main orbital forces that influence the 
motion of a satellite in LEO are different from those that affect a spacecraft orbiting 
around the moon. Hence, the orbital filter uses different process models based on the 
altitude of the receiver, in order to lower the computational burden. Indeed, it would not 
be meaningful to model, for instance, the gravitational perturbation due to the sun when 
the spacecraft is in LEO, as well as modelling the spherical harmonics of the Earth 
gravitational potential when the receiver is close to the moon. 

The main acceleration for a spacecraft orbiting around the Earth is defined by 
(Montenbruck and Gill, 2000): 

3

μ
r
⊕= −
rr  (5.14) 

where r is the position vector of the spacecraft with respect to the ECI frame and r is its 
module; μ⊕ = GM⊕ is the Earth’s planetary parameter equal to 398,600.4405 km3/s2. 

Several additional accelerations, which can be considered as perturbation of the 
osculating orbit, have to be included in the model to increase the accuracy of the 
dynamics estimation. In particular, the process model (that corresponds to an orbital 
propagator) includes: spherical harmonics of Earth gravitational potential up to 6th 
degree and 6th order in LEO; spherical harmonics up to 2nd degree and 2nd order, SRP, 
and the gravitational perturbations due to the sun and the moon from LEO to 50,000 km 
altitude; and above 50,000 km, SRP and lunar and solar third body perturbations. All the 
perturbations have been modelled according to Montenbruck and Gill (2000), except for 
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the SRP which has been modelled following the method presented in Battin (1987) [see 
Basile (2015) for more details]. 

Note that the atmospheric resistance in LEO is not modelled in order to save 
computational burden at the expense of an inaccuracy of the mathematical propagation 
since at this altitude the GPS measurements are very accurate and a precise orbit 
propagation is not required. In a future enhancement, in order to increase the accuracy, 
the atmospheric resistance could be modelled as well, if enough computational resources 
are available. 

5.5.1 Accuracy of the process model 

The accuracy of the implemented propagator used as process model is shown in Figure 5 
for the full MTO trajectory. The 3D position error with respect to the reference orbit is up 
to 280 km. 

Figure 5 Implemented propagator drift respect to reference orbit (see online version for colours) 

 

5.6 Observation functions 

When measurements are provided by the GPS receiver, they are predicted by the process 
model of the filter as follows: 

( ) ( ) ( ) ( )2 22
ρ sat sat satρ h x x y y z z b− −= = − + − + − +x  (5.15) 

( ) ( )ρρ h b− −= = − ⋅ +satx v v a  

where xsat, ysat, zsat are the position’s components of the GPS satellite that is transmitting 
the signal, x, y, z are the predicted user’s position components, b is the receiver’s clock 
offset, vsat and v are, respectively, the velocity vector of the transmitting GPS satellite and 
of the spacecraft, b  is the clock’s drift, and a is the LOS vector from the user to the GPS 
satellite. 

Thus, the observation vector z– corresponds to: 

( ) 1 2 1 2
T

n nρ ρ ρ ρ ρ ρ− − − − − − − −⎡ ⎤= = ⎣ ⎦z h x  (5.16) 
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5.7 State transition matrix computation 

The state transition matrix aims to propagate the covariance matrix of the error on the 
state estimate as shown in equation (5.3) and it is equal to an exponential function of the 
system matrix linearised about the state vector estimate A [see equation (5.4)]. However, 
it can be approximated as (Groves, 2013) 

( ) ( )11 1 ,k sA τ
k k se I A τ−− −Φ = ≅ +  (5.17) 

where I is the unit matrix and τs is the propagation interval. 
In order to compute A [and then to linearise the process f(x, t) about the updated state 

as shown in equation (5.5)], the complex-step derivative approximation is adopted. This 
method has been used in many studies such as Anderson et al. (2001), Martins et al. 
(2000), Lai and Crassidis (2006) and Martins et al. (2003). 

5.8 Observation matrix 

The observation matrix H is defined as the Jacobian of the observation functions (5.15) as 
follows: 

( )H
−=

∂
=

∂ x x

h x
x

 (5.18) 

For the position-based orbital filter, the measurements vector includes the same physical 
quantities that define the state vector: position and velocity, in fact: 

[ ]TpH x y z u v w= =p pz x  

Hence, the observation matrix is equal to a 6 order identity matrix: 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

pH

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

For the range-based orbital filter, the measurement vector contains pseudoranges and 
pseudorange rates and the state vector also includes the receiver’s clock initial bias and 
drift. 

For n pseudorange and pseudorange rate observations, the observation matrix Hr is 
the following 2n × 8 matrix: 
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1 1 1

2 2 2

1 1 1

2 2 2

1 0 0 0 0
1 0 0 0 0

1 0 0 0 0
0 0 0 0 1
0 0 0 0 1

0 0 0 0 1

x y z

x y z

xn yn zn
r

x y z

x y z

xn yn zn

a a a
a a a
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where axi, ayi, azi are the component of the user-to-satellite LOS. 

5.9 Adaptive architecture of the system 

A Kalman filter computes an optimal estimate by weighting the process and the measures 
through their variance-covariance matrices. As seen in Section 4, during a MTO, once the 
receiver is above the GPS constellation, the GPS accuracy strongly decreases with the 
altitude: both pseudorange error and GDOP increase as the receiver moves further from 
the GPS constellation. Therefore, if the variance-covariance matrix of the measurements 
R is kept constant, the filter cannot be tuned properly during the full trajectory. Figure 6 
shows the position-domain filtered solution accuracy when the covariance matrix of the 
measurements R is set as constant and tuned for the LEO portion of the trajectory, while 
Figure 7 shows the performance obtained when R is set as constant but tuned for the last 
part of the trajectory. In the first case, when the tuning is optimised for LEO, the Kalman 
gain is computed by weighting more the measures (more accurate in LEO) than the 
process; hence, the estimation error at higher altitude approximately equals the 
measurements error. In the second case, the filter is tuned as it would operate at higher 
altitude; and it is clear from Figure 7 that while at high altitude the filter reduces strongly 
the measurement error, in LEO, the estimation error is even larger. 

Figure 6 Orbital filter performance when no adaptivity is used: the R matrix is tuned to work 
well at low altitude (see online version for colours) 
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Therefore, the variance-covariance matrix R has to be adapted to the GPS measurements 
accuracy. Obviously, this strategy is applied in different ways to the different 
configurations of the orbital filter. In case the measurements vector is composed by 
position and velocity (integration in the position-domain), the R matrix is a function of 
the GDOP multiplied by the estimated pseudorange error; instead, in case of pseudorange 
and pseudorange rates as input of the filter (integration in the range-domain), the R 
matrix does not include the contribution of GDOP. 

Figure 7 Orbital filter performance when no adaptivity is used (zoom on the first 40,000 s): the R 
matrix is tuned to work properly at high altitude (see online version for colours) 

 

Figure 8 Adaptive strategy (see online version for colours) 

 

Note: In case the pseudorange is directly processed in the filter, the GDOP does not 
appears in the computation of the R matrix. 
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The adaptive strategy is illustrated in Figure 8. From the estimated state computed at the 
previous time-step, the filter estimates the GDOP and the noise on both pseudorange and 
pseudorange rate measures. 

In addition, as illustrated in Figure 2, the GPS error may reach very high peaks of 
hundreds km, due to the corresponding peaks of the GDOP (see Figure 3). For this 
reason, the orbital filter makes a check of the GDOP computed by means of the estimated 
state. In case it exceeds a threshold (a value of 1,500 has been set after a tuning), the filter 
replaces the estimated state with the propagated one. This corresponds to rely completely 
on the orbital propagator when the relative receiver-GPS satellites geometry, and 
therefore the observations, is too poor. 

5.10 Simulation test bench 

For both filters, the simulation consists of six steps: 

1 Filter initialisation. According to Kalman filter theory, both 0P−  and 0x−  are 
initialised from known data. This data is obtained from the first fix of the GPS 
receiver. In order to pass from pseudoranges to position, an un-weighted least  
square algorithm is used. 

2 Measures. Once the initialisation is completed, the filtering loop can start. At each 
instant of time, pseudoranges and pseudorange rates are computed by using 
equations (3.1) and (3.2), respectively, from the true ranges and ranges rate. The 
visible and available satellites are selected based on the signal power level at the 
receiver position provided by the PosApp software. Each signal is considered 
available if its power level at the receiver is higher than the threshold of –169 dBm 
(assuming –159 dBm receiver sensitivity and 10 dBi receiver antenna gain). 

3 Filter estimation of pseudorange error and GDOP. Prediction of pseudorange and 
pseudorange rate errors and GDOP are computed by using the observation functions 
(5.15). 

4 R matrix. Pseudorange and pseudorange rate errors and GDOP estimates are used to 
update the variance-covariance matrix R. It is a six order square matrix for the 
position-based orbital filter, where the mean value of all the computed tracking 
thermal noises together with the GDOP are included in R. For the range-based filter, 
R is a 2N order square matrix, where N is the number of available satellites. In this 
case, the GDOP does not have any impact on the measurements, contrary to the 
position-based filter architecture where the GDOP is directly used to compute the 
variance-covariance matrix of the measurements error. 

5 EKF. At this point, the EKF has all it needs to provide the state estimate. Its output is 
used as input for the following estimation. 

6 Computation of errors. Once the filtering loop is over and the trajectory is estimated, 
the errors can be computed by comparing the estimation to the reference trajectory. 
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6 Results 

6.1 Orbital filter performance 

Figure 9 and Figure 10 illustrate the 3D position error and the 3D velocity error, 
respectively for the position-based orbital filter and the range-based one. As expected 
and discussed above using pseudorange and pseudorange rate as direct input is more 
efficient. In the last 5 hours and 45 minutes of orbit, the standard deviation of the 3D 
position error is approximately equal to 430 m (1σ) for the position-based configuration 
and to 100 m (1σ) for the range-based configuration. 

Figure 9 GPS L1 C/A-based orbital filter 3D position error for the defined MTO (see online 
version for colours) 

 

Figure 10 GPS L1 C/A-based orbital filter 3D velocity error for the defined MTO (see online 
version for colours) 

 

Figure 11 shows the orbital filter performance compared to the standalone GPS 
performance: using the same scale the error of the orbital filter is not even visible and a 
zoom is required as shown in Figure 12. 
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Figure 11 Comparison between stand-alone GSP measures, position-based orbital filter and 
pseudo-rage-based orbital filter (see online version for colours) 

 

Figure 12 Zoom of comparison between stand-alone GSP measures, position-based orbital filter 
and pseudo-range-based orbital filter (see online version for colours) 

 

Figure 13 Orbital filter 3D position error when 4 or less than 4 pseudoranges are available  
(see online version for colours) 
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Figure 14 Carrier Doppler orbital filter estimation error for PRN 4 signal for the last 90 minutes 
of the MTO (see online version for colours) 

 

Figure 15 Carrier Doppler rate orbital filter estimation error for PRN 4 signal for the last  
90 minutes of the MTO (see online version for colours) 

 

Figure 13 illustrates the efficiency of the range-based orbital filter when a limited 
number of observations are available. The test has been done for a small portion after the 
first 3,330 min of the defined MTO and it shows that after a short time interval (about  
25 min) the orbital filter is already able to provide a 3D position with an error that is 
smaller than the one obtainable by processing four pseudoranges. In the first 10 min, the 
only orbital propagation is even more accurate than the fusion with the measurements. 
This demonstrates the robustness of the orbital propagation filter against poor visibility 
periods or total signal outages. 

Note that the orbital filter can be used not only to improve the navigation 
performance, but also to provide assistance data for the acquisition and tracking process. 
The estimation of Doppler and Doppler rate allows to predict the incoming signal’s 
frequency and its variation, thus allowing longer dwell times (for the correlation of the 
incoming signal with the generated replica in the GPS receiver) for a given signal 
dynamic or stronger robustness against higher signal dynamics for a given dwell time. If 
the Doppler and Doppler rate estimation are enough accurate, a much higher sensitivity 
can be obtained, also in very high dynamics environment such as in LEO when the 
receiver can reach a relative velocity of several km/s with respect to the GPS satellites. 
The prediction of the GPS visible satellites reduces the number of PRNs that have to be 
searched in acquisition, reducing the acquisition time. A more detailed study that 
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quantifies the required assistance is presented in Capuano et al. (2014a). Figure 14 and 
Figure 15 respectively show an example of the carrier Doppler and carrier Doppler rate 
estimation errors when they are computed by using the position and velocity estimated by 
the range-based orbital filter. Such values can greatly aid the signal processing module 
both in acquisition and tracking processes as demonstrated in our previous work 
(Capuano et al., 2014a). 

7 Conclusions 

New GNSS receiver’s technologies have allowed to extend the use of GNSS to very 
challenging applications, such as navigation system for lunar missions, where the GNSS 
signals are characterised by very low power level at the receiver and the system geometry 
is poor. This appears to be appealing since using GNSS could yield to significant 
reduction of the operating cost for such missions. 

This paper demonstrates that a relatively accurate and autonomous orbital 
determination may be performed by means of a GPS-based orbital filter, which provides 
the navigation solution by filtering GPS observations through a space dynamic model. 
Here, a comparison between two different configurations of the orbital filter, range-based 
and position-based, is performed. The most remarkable results are obtained with the 
range-based architecture: we achieved an accuracy of about 100 m (1σ standard 
deviation) in position at moon altitude. 

In future works, the functioning of the range-based orbital filter implementation will 
be further assessed using our full-constellation GNSS simulator and processing the GPS 
observations directly with the hardware receiver currently under development in our 
laboratory, specifically designed for space missions, in order to validate the results 
obtained so far. The use of GNSS signals from GPS-Galileo combined constellation and 
use of two frequencies to mitigate possible ionosphere delay will be investigated as well 
in order to improve the performance. In this context, finally, we will also optimise the 
error budget on the measurements to have more realistic simulations. 
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