
   

  

   

   
 

   

   

 

   

   Int. J. Cognitive Biometrics, Vol. 1, No. 1, 2012 39    
  

   Copyright © 2012 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Heartbeat biometrics: a sensing system perspective  

Steven A. Israel  
5160 Parkstone Drive Suite 230, 
Chantilly, Virginia 20151, USA 
Email: steve.israel@hotmail.com  

John M. Irvine* 
Draper Laboratory, 
555 Technology Square, 
Cambridge, Massachusetts, USA 
Email: jirvine@draper.com 
*Corresponding author 

Abstract: This paper reviews the emerging research into exploitation of 
heartbeat data as a biometric for human identification. A variety of methods 
have been proposed for acquiring heartbeat signatures and a range of processing 
methods has been examined. We approach the biometric identification and 
verification problem by characterising the three major factors affecting 
performance: individual variants, environmental variants, and sensor variants. 
The ability to collect and process the signal, exploit the data for individual 
identification or verification, and disseminate the information depends on all 
three of these factors. Within each component, we have identified the relevant 
research. Where possible, we have tied these research papers to practical 
examples using high resolution ECG data. The research indicates that the 
heartbeat contains rich information about the individual, their level of anxiety, 
and the cardiac state. 
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1 Introduction  

Human identification based on cardiac performance involves acquisition, processing, and 
exploitation of heartbeat measurements. The sensing arrays are either in contact or close 
proximity to the target, and the consumer has direct access to the signal formation and 
the storage elements. However, isolating the signal does contain its challenges for 
characterising the individual with respect to their identity, emotional state, or normal 
cardiac state. The challenges lie in three fundamental domains and are highly dependent 
upon applications: the collection environment, the target variations, and the sensor 
effectiveness (Figure 1). The recorded heartbeat is a convolution of these factors: sensor, 
environment, and target. By setting the heartbeat recognition problem as a signal 
processing problem, we will identify the issues to solve for operational utility. 

Figure 1 Noise sources for a sensing system (see online version for colours) 

 

The biggest question to answer is, why use heartbeat data as a biometric? The signal is 
persistent, repetitive, and dependent on fundamental physiological processes, which 
makes it difficult to spoof or mask (Hawkins, 2002). This makes the heartbeat data 
valuable for characterising non-cooperative and un-cooperative individuals. Heartbeats  
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are orthogonal information to traditional biometrics of iris, face, and fingerprint.  
Heartbeats are collected using non-imaging techniques, which makes long theoretical 
standoff distance collection possible. Cardiac maladies are readily observable in nearly  
all collection modalities, which could segment those individuals to a reduced candidate 
population (Clifford, 2006). Heartbeats are the ultimate liveness metric and the inability 
to collect the cardiac information from a targeted individual is in itself an indicator. 

However, heartbeat data have several dramatic limitations that must be overcome 
before operational employment occurs. The data contain a relative low information 
content to identify a reasonably size population using the current collection and feature 
extraction techniques (Israel et al., 2009). Long dwell times on target are needed to 
collect a sufficient number of samples to identify an individual. The expression of 
environmental variables and stressors on the heartbeat data is fairly unique to the 
individual. Compensation for emotional state requires an intra-individual normalisation. 
Contact measurements vary with position of the sensors on the body and the sensing 
technique. Although recognition and verification processing appear to be tolerant to 
normal changes over short time spans of months to a couple of years, no systematic study 
has examined biometric performance over multiple years. Cardiac events and health have 
dramatic impacts on the resulting data signatures, even across short time lines. 

The digital exploitation of the heartbeat began with Bayly (1968). Even then, the 
digital filters were mechanical impedance devices rather than computational algorithms. 
The majority of the work has occurred for medical applications. The greatest volume of 
work occurs with the assessment of heart rate variability (HRV) (Malik, 1996; Tiller  
et al., 1996; Dekker et al., 1997; Liao et al., 1997). The basic HRV processing is to 
compute the beat-to-beat interval statistics over long durations. Low variance is a strong 
indicator for sudden cardiac failure. The second common digital signal processing 
medical application is classifying heartbeats as either normal or associated with a cardiac 
malady (Kundu et al., 2000; Vila et al., 2000; Carlson et al., 2001). This latter process is 
an application of supervised classification. 

One of the real breakthroughs for HRV processing is for sleep apnoea (de Chazal  
et al., 2003). The transmission of digital heartbeats allows remote monitoring and the 
determination of the sleep state of the subject. This allows the subjects to be monitored in 
their own home which drastically improves the diagnostic impact, while reducing the 
data acquisition costs. The earliest focused biometric studies appear with van Oosterom 
et al. (2000) who noticed that the inter-individual differences for electrocardiogram 
(ECG) traces were significant. This was followed by Irvine (2001) and Biel (2001) who 
devised experiments for a human identification proof of concept. 

As with any biometric system, the heartbeat processing methods encompass an 
enrolment and operational process. Each stage of the signal acquisition, processing, and 
decision depends on the factors identified above: the subject, the sensing method, and the 
environment. Figure 2 illustrates this relationship. 

The remainder of this paper is organised in the following manner. The next section 
covers the data collection and processing to create the heartbeat trace. The following 
section identifies the information exploitation required and their performance measures 
to characterise three specific applications: human identification, heartbeat classification, 
and mental state. The final section covers the dissemination issues that must be solved  
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when deploying a heartbeat identification or verification system. This paper covers the 
technical issues associated with signal and information processing. Any policy or societal 
reference is only for illustrating engineering constraints. 

Figure 2 Biometric system design (see online version for colours) 

 

2 Signal acquisition and processing  

Unlike many sensing systems, the heartbeat mechanics are widely understood as are the 
noise sources. A detailed review for the biophysics of a heartbeat appears in Marieb 
(2003). 

2.1 Signal acquisition  

The heartbeat produces signals that can be observed using a variety of sensors. First, the 
heart’s contraction is triggered by an electromagnetic pulse. The body is sufficiently 
conductive to transmit electrical signals. Second, the heart physically contracts. The heart 
contraction circulates blood through the vascular network of veins and arteries. Much of 
the vascular network is near the human skin. The veins and arteries themselves are 
sufficiently elastic to produce a deflection during changes in blood pressure. Blood 
oxygenation and therefore light absorptance is highly correlated to blood pressure. The 
deflection changes of the heart also produce sounds. 

Sensing of the heartbeat can be realised through a variety of phenomena: electric, 
optical, pressure and acoustic (Table 1). 

Contact measurements of cooperative subjects provide the highest fidelity 
measurement, but non-contact, non-invasive sensing techniques have also been explored. 
Figure 3 shows the mechanics of a single heartbeat. The ECG and blood pressure data 
overlay the opening and closing of the heart valves to highlight the sensing 
phenomenology. The blood pressure lags the electrical firing mechanisms of the 
heartbeat. The contrast in the two metrics indicates the state of the heartbeat. 
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Table 1 Summary of sensing methods 

Method Phenomenology Signal acquisition Comments 

ECG Electrical Contact Very rich signal 
Pulse Oximeter Optical Contact Easy to acquire 
Blood pressure Pressure Contact Easy to acquire 
Heart sounds Acoustic Contact or  

non-contact 
Affected by  

environmental noise 
Laser Doppler  
Vibrometry 

Surface  
displacement 

Non-contact Subject motion  
is an issue 

Radar Doppler Non-contact Subject motion  
is an issue 

Motion imagery Skin colour  
fluctuations 

Non-contact Experimental  
method 

Figure 3 Heartbeat electrical, acoustical, and mechanical (see online version for colours) 

 

Source: Adapted from Marieb (2003) 

2.1.1 Contact measurements  

Auscultation is the science of listening to body sounds; i.e. a physician characterising 
patient health by using a stethoscope. Modern microphones and recording techniques 
have improved sufficiently that digital heartbeat data can even support training medical 
students (Barrett et al., 2004). Recently, heart sounds have been exploited to classify 
medical maladies and as a biometric (Nigam and Priemer, 2004; Beritelli and Serrano, 
2007; Phua et al., 2008). Scanlon (2001) mapped the body sound changes as a function of 
macro movements. 
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Blood pressure has also been collected to characterise cardiac performance. The 
blood pressure information is based upon the expansion of the blood vessels with 
changing pressure during the heart’s contraction. Classically, the sphygmomanometer is 
used to record the peak and low points on the pressure curve. Baselli (2002) digitally 
collected dynamic blood pressure measurements across multiple heartbeats. 

Similarly, the pulse oximeter was developed to exploit the changes in blood flow 
through the blood vessels. The device uses the absorption of light to characterise 
differences in the heartbeat sequence. Specifically, the difference between the absorption 
in the red and near infrared spectra of visible light provides a measure of blood 
oxygenation (Yoshiya et al., 1980). Tai (2006) exploited pulse oximetry data for liveness 
metrics. 

The earliest mechanical sensing of the heartbeat used a magnet (Bazett, 1920) to 
deflect a sewing needle connected to two pieces of wire and affixed to the body. The 
needle was later attached to a pen to form the electrocardiograph. The first ECG data 
processing occurred later in the 20th century (Golden Jr et al., 1973; Huhta and Webster, 
1973). 

By far the most common contact measurement of cardiac performance is the 
electrocardiogram. The ECG measures the changes in electrical potential over time. The 
relative sensor positions to the plane of zero electrical potential provide additional 
information about the cardiac performance (Dubin, 2000). The resultant expression of the 
heartbeat mechanics is captured in the synchronised electrocardiograph, blood pressure, 
and pulse oximetry data show in Figure 4. 

Figure 4 Simultaneous ECG, blood pressure, and pulse oximetry (see online version for colours) 

 

More generalised electrical recordings can be obtained using a charged sensitive bed. The 
process is called ballistocardiography. The subject is in contact with two sheets that are 
sensitive to electrical potential differences brought about by the depolarisation of the 
heart. The advantage is that these measuring procedures are more tolerant to the subject’s 
movement during sleep studies (Jansen et al., 1991). 
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2.1.2 Non-contact measurements  
Notionally each of the above contact sensing modalities has a surrogate standoff sensing 
modality. However, the strength of signal and noise environments makes standoff cardiac 
biometric signatures difficult to acquire. This section contains information about those 
sensing modalities currently feasible. 

Researchers at Georgia Technology Research Institute (GTRI) used an active radar to 
note the changes heart volume over time (Greneker, 1997; Geisheimer and Greneker III, 
1999). The physical deformation provides extensive information about the individual and 
the relative health of the heart itself along with respiration and other body movements 
and muscle flexor noises. This work for human identification is impressive because the 
potential standoff ranges are in excess of 1 km. 

The GTRI work formed the basis for Mazlouman et al. (2009) to characterise cardiac 
performance using microwave Doppler radar. Instead of attempting to provide surrogate 
ECG information, these researchers looked in the infrasonic range, i.e. < 20 Hz through 
ultra-wide band radar > 2 MHz. The researchers continually were able to collect reliable 
data between 2 and 10 metres. The group was able to overcome the problem of 
separating macro-body movement from cardiac pulsing by reducing the pulsing dwell 
times and characterising only the heart rate variability rather than heartbeat identification. 

Another measure of standoff cardiac measure was provided by (Parra and Da Costa, 
2001). Interferometric data were collected from the pulsing of the carotid artery over 
time. The measurements were collected with an eye-safe laser. The technique uses laser 
Doppler vibrometry at high speeds to capture of impulse of the deflection (example in 
Figure 5). Chen et al. (2010) observed a 0.5% equal error rate across a population of 
approximately 300 individuals, but concede that the separation of macro-body movement 
is not currently a solved problem. 

Figure 5 Sample interferometric data collected from 10 metres at the carotid artery (see online 
version for colours) 

 

Standoff range can be estimated using the following scenario. A moderately stable laser 
has a spot stability of ± 80 radians. The carotid artery deflects across 5 mm minor axis. 
Therefore, the standoff range can be computed as: 

6

cross-sectional area 0.005 mstandoff distance 62 metres
tan tan 80eθ −= = =  



   

 

   

   
 

   

   

 

   

   46 S.A. Israel and J.M. Irvine    
 

    
 
 

   

   
 

   

   

 

   

       
 

This improves the standoff range to 1000 metres with a highly stabilised laser that 
accrues only a 5 μ-radian deflection. Lasers with a spot stability of 5 radians are 
commercially available. However, no filtering techniques exist to effectively remove the 
macro body movement noise from the carotid artery interferometry. 

2.1.3 Absorption coefficient  

The absorption of light in the red and near infrared domain could also be used as a 
standoff biometric (Sun et al., 2005). A passive system does not contain the combination 
of cardiac function and macro-body motion signals of active systems. Therefore, the 
theoretical standoff distance more closely matches the idealised computational distance. 
If the target is the human face, the sensor would only need 6 pixels to cover a 
10 cm × 10 cm area. For visible light, a 5 um pixel pitch focal plane array is available. 
Given those constraints, a remote pulse oximeter could collect signals from a 640 × 480 
standard format focal plane array digital camera can easily focus on 5 degree field-of-
view. The camera would require filters to capture the red and near infrared spectral 
components (Figure 6). However, standard visible light sensors are sensitive to these 
bandpasses. To perform this analysis, only a 4 × 4 pixel array on the face is required 
which equates to a 

4 pixels 5 degreesfacial extent FOV 0.04 degrees
480pixels

∗
= =  

and a 

cross-sectional area 0.01 mstandoff distance 138 metres
tan tan .04θ

= = =  

Early experiments have confirmed the viability of this technique (Poh et al., 2010; Farley 
et al., 2011; Poh et al., 2011). 

Figure 6 Absorption of light by wavelength by the blood (see online version for colours) 
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2.2 Signal processing  

2.2.1 Noise removal  

Both contact and non-contact heartbeat signals contain noise. These sources were 
characterised by Clifford (2006) and Friesen et al. (1990) for contact ECG data. These 
authors have characterised these noise sources effects on data exploitation. The noise 
sources are defined as powerline interference (Huhta and Webster, 1973), electrode 
contact noise (Oster, 2000), motion artefacts (Garcia et al., 2003), muscle flexor, baseline 
drift/ sensor thermal noise (Barros et al., 1995) and ECG amplitude drift with respiration 
(Lindberg and Oberg, 1991; Cysarz et al., 2008), instrumentation noise (Fernandez and 
Pallas-Arney, 2000), and electrosurgical noise, which is not relevant to biometrics. 

The noise sources are expressed in the heartbeat trace as high frequency (intra-beat) 
and low frequency (inter-beat) components. The most significant high frequency noise is 
the power line interference (Figure 7a), which in North America occurs at 60 Hz and 
elsewhere at 50 Hz. The lower frequency components, such as thermal drift and muscle 
flexor noise, are expressed in Figure 7b. 

Figure 7 Noise sources: (a) powerline and (b) thermal drift (see online version for colours) 

 
(a) 

 
(b) 
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Powerline removal was surveyed by Hamilton (1996). There exist three basic strategies: 
60 Hz notch filtering (Pei and Tseng, 1995), non-adaptive (Kaur and Arora, 2010), and 
adaptive filters (Thakor et al., 1984; Thakor and Zhu, 1991). The 60 Hz notch filter, 
sometimes called spectral differencing, focuses on one specific frequency band and is 
removed by frequency convolution. Most signal processing techniques apply a more 
general bandpass approach to extract both the low frequency and high frequency 
components at the same time (Figure 8). In Figure 8, we can see the heart rate at 1.10 Hz 
and thermal or senor baseline noise at 0.06 Hz in addition to the powerline noise. 

Figure 8 Fourier bandpass filtering: 0.06 Hz peak = thermal noise; 1.1 Hz peak is the subject’s 
heart rate; and 60 Hz peak is the powerline noise. The arch over the graph is the 
equivalent bandpass acceptance region (see online version for colours) 

  

Other effective low computation cost filtering includes regression spline reconstruction 
(Stegle et al., 2008) and local temporal averaging. Researchers have also proposed 
methods for evaluating the noise source relative to the known ECG trace (Laguna et al., 
1992; Olmos and Laguna, 2000). However, these latter techniques provide limited 
improvement over bandpass filtering because the noise environment is nearly constant. 

For moving subjects, the macro body movement becomes a significant noise source. 
This has been observed in simple cases for ambulatory clinical patients (Hayes and 
Smith, 2001). In these cases, an additional factor for understanding body movement must 
be characterised using an instantaneous movement model.  

The above methods have focused on ECG data. However, Israel (2009) applied them 
to blood pressure and pulse oximetry data with similar improvements to signal quality. 
Jimenez-Gonzalez and James (2009) showed the process can be applied to foetal heart 
sounds. However, the recovery of the signals using independent component analysis 
(ICA) employs a more adaptive strategy to separate the macro body movements of both 
the mother and child. In addition to powerline noise, Khamene and Negahdaripour 
(2000) and De Lathauwer et al. (2000) proposed a deconvolution between the maternal 
and foetal ECG trace with varying success. Husoy et al. (2002) offered a method to 
remove CPR effects from the ECG trace using signal processing. Boucheham (2008) 
identified a pattern matching noise removal technique using forward prediction and 
backward interpolation of the repetitive time series data.  
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2.2.2 Heartbeat alignment  

After the signals are cleaned, the next step is to align the heartbeats for human 
identification and heartbeat classification. Although some researchers have proposed 
methods that do not require heartbeat alignment (e.g. Phua et al., 2008), most approaches 
include this step. The reason for alignment is that most techniques rely on features 
derived from the morphology, amplitude, and timing of the heartbeat, thus requiring 
segmentation of individual beats. For the ECG, alignment is performed for two reasons: 
(1) orient the P, R, and T complexes for fiducial segmentation; (2) remove spurious 
heartbeats that broaden the individual’s expected template. The most obvious method is 
to extract the heartbeats using an autocorrelation approach. Figure 8 shows that the 
strongest frequency occurs at the mean heart rate, 1.1 Hz. The problem is just as obvious 
because any individual beat-to-beat interval has the potential of being dramatically 
different from the mean. Therefore, each heartbeat must be segmented using an adaptive 
approach (Jane et al., 1991). For the ECG, the process is straightforward because the 
trace contains a number of high frequency components to match. 

Most commonly, the R complex is used for peak-to-peak alignment (Afonso et al., 
1999; Al-Khalidi et al., 2001). The R complex is nearly invariant to heart rate and is 
readily observable, which makes ideal for registration. The basic process is to use 
moving windows (Kohler et al., 2002) or a multi-scale approach (Laciar et al., 2003). A 
less efficient approach is to employ a Fourier correlation approach, but this has 
limitations of performance based upon the coarseness of the power spectral density 
attributes (Laguna et al., 1992). Alignment output can be visualised as a waterfall 
diagram (Figure 9). 

Figure 9 Waterfall diagram: Registered heartbeats for multiple intra-subject ECG traces for 
multiple subjects (see online version for colours) 

 

2.2.3 Sources of variance  

To transition any system, the sensor and target must be characterised within a specific 
operating environment. For most of the heartbeat studies, the environment has been 
optimised to a clinical setting. These studies shine light on the requirements for data 
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processing. Palova et al. (2010) showed that even with contact measurements, subjects 
with autonomic neuropathy generated traces with low signal-to-noise ratios. Pullan et al. 
(2001) oversampled the ECG to generate an individualised 3D heart models within a 
conductive environment. However, for human identification this is just impractical.  

In addition to the physical sources of variance such as CPR and foetal traces, there 
exist changes in a subject’s emotive state expressed in the heartbeat data. Usanova et al. 
(2009) identified changes in the ECG caused by music. Pina et al. (1995) collected 
subject data under varying stress levels. They concluded that a large amount of metadata 
is required to characterise the subject during their experiments.  

Sharpley et al. (2000) identified the changes in the heartbeat pattern as an individual 
transitioned from exercise to recovery. Chemical issues will alter a subject’s ECG trace. 
Benatar et al. (2000) showed the significant effects of a gastrointestinal drug on the QT 
interval compared to those drug-free subjects. The heartbeat is also affected by nature 
and pollution (Liao et al., 2010). Each subject’s reaction to stress is different (Steinbrook, 
1992) and that is expressed in their heartbeat traces. 

Finally, the most obvious variations from the norm are those individuals with cardiac 
maladies. Their heartbeat traces differ dramatically from normal. Extracting standard 
features or using principal components analysis with this small section of the population 
greatly weakens the performance of any identification or verification application (Sahu  
et al., 2000). Chauhan et al. (2002) and van Oosterom et al. (2000) noticed gender 
difference, but did not collect sufficient amounts of data to understand if this was due to 
body size or level of fitness. Hoekema et al. (2001) and Peng et al. (1993) showed that 
beat-to-beat correlations exist locally and break down over time.  

Heart rate varies with a person’s mental or emotional state. Excitement or arousal 
from any number of stimuli can elevate the heart rate. Irvine et al. (2001) and Israel et al. 
(2005) developed an experimental protocol where subjects performed a series of tasks 
designed to elicit varying mental and emotional states (Irvine et al., 2001; Irvine et al., 
2002; Irvine et al., 2003; Israel et al., 2005). The subjects exhibited changes in heart rate 
associated with these tasks. A set of fiducial features, designed to represent heartbeat 
morphology, show relatively small differences due to the variation in heart rate. To 
illustrate, Figure 10 presents 6 heartbeats from a single subject and the baseline task, 
where the subject is seated at rest. In addition, 6 heartbeats from a high stress task were 
aligned, temporally re-scaled, and overlaid on the same graph. For this particular subject, 
the mean R-R interval for the baseline task was 0.715 seconds and for the high stress task 
it was 0.580 seconds. The high-stress heartbeats align well with the baseline heartbeats. 
A difference in the height of the T wave is evident, but the fiducial features depend on 
the relative temporal positions of the peaks, not the electrical potential (heights). 

We characterised the sources of variance in the fiducial features using a multivariate 
analysis of variance (MANOVA). The 29 subjects performed seven tasks in the 
experimental protocol eliciting a range of stimulation (Irvine et al., 2001; Israel et al., 
2005). The MANOVA (Figure 11) shows that there are small, but statistically significant, 
differences in the fiducials across the various tasks, indicating that there are subtle 
differences in the ECG signal that are more complex than a linear rescaling. This source 
of variance, however, is typically one or two orders of magnitude smaller than the 
variance across subjects. This relationship is why the fiducial-based features are likely to 
provide good information about a subject’s identity across a range of mental and 
emotional conditions. 
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Figure 10 Aligned heartbeats from high stress and low stress tasks. 

 

Figure 11 Comparison of attribute variance to subject vs. task 

 

3 Experimental data  

To characterise subjects in the operational environment, we need to generate a more 
diverse dataset data at higher levels than simple proof-of-concepts. Israel et al. (2005) 
collected data across multiple levels of mental and emotional stimulation. The assay was 
organised to observe each subject within each session through meditative, stressor, and 
recovery periods.  
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The protocol enrolled 104 individuals: 68 males and 36 females. Individuals were 
required to be in good health without known cardiac anomalies. The fiducial method was 
unable to enrol approximately an additional 30 individuals based upon excessive noise in 
their ECG trace or heartbeat irregularities. Ages ranges from 8–84. Males skewed 
younger and females skewed older. The exact demographics are not available for all 
subjects since some of the data were collected with a proprietary system that encrypted 
the ‘interesting’ metadata. A total of 350 subject sessions were acquired. Using the 
fiducial method identified 88.25 of the individuals.  

Other experiments approached operational issues for human identification based upon 
heartbeat information. Wubbeler et al. (2007) identified 74 individuals using 234 sessions. 
Zonios et al. (2004) characterised the pulse oximetry trace as a function of subject’s state 
of anxiety. Irvine and Israel (2009) identified the number of heartbeats required for a 
classifier to make a decision for each subject in a verification system. Chellakumar et al. 
(2005) showed no significant difference between heart rate variability calculations for 
data with temporal resolutions greater than 100 Hz. Information below 100 Hz could 
only be inferred.  

The most complete repository for ECG data is the MIT BIH database (Goldberger  
et al., 2000). However, it was generated without concern for the operational environment 
and there are very few cases of individuals under stress. The amount of metadata is 
limited to the state of the individual and the condition of their heart. Jager et al. (2003) 
described their ST database for development of algorithms to detect myocardial 
ischemia. Taddei et al. (1992) offered a database and standards with metadata for 
evaluating ST-T for ambulatory ECG patients. Chronaki et al. (2002) provided a 
common sensor collection and exploitation system message format. However, these 
systems have not incorporated the variety of environmental conditions essential for 
developers to commercialise a heartbeat biometric system. 

4 Exploitation  

Despite the limitations identified above, many researchers have developed systems to 
exploit heartbeat information. In this section, we identify the features from the cleaned 
heartbeat data. Then, we describe the algorithms used to characterise the subjects. Many 
of these sources are focused to medical diagnostics, but their data handling techniques 
are important.  

4.1 Feature extraction  

Heartbeat features have been extracted from multiple domains: temporal (Koski et al., 
1995; Molina et al., 2007), Fourier (Berger et al., 1986), and discrete cosine transform 
(Plataniotis et al., 2006). Within a domain, features are extracted as either raw (Israel  
et al., 2005), texture (Porta et al., 2001), power spectrum (Barros and Ohnishi, 2001; 
Stridh et al., 2004), and PCA/ ICA (Garcia et al., 1998; Barros et al., 2000). Afonso et al. 
(1999) integrated the noise reduction and feature extraction by using filterbanks. This 
estimates the heartbeat trace with a polynomial spine and uses the polynomial 
coefficients as features themselves. The most common medical application is HRV. This 
can be performed by analysing the heart rate using statistics.  

 



   

 

   

   
 

   

   

 

   

    Heartbeat biometrics 53    
 

    
 
 

   

   
 

   

   

 

   

       
 

Feature extraction from the heartbeat traces has become more focused for human 
identification pattern recognition problems. The experiments can be broken into two 
basic classes: (1) raw features; and (2) eigen features. Irvine et al. (2001) used raw 
temporal features based upon an additional set of fiducials not commonly identified by 
the medical community. 

The problem with fiducial based feature extraction is exception handling. Only 75% 
of the candidate subjects from the Irvine et al. (2001) experiment were successfully 
enrolled. However, those enrolled were identified over 95% of the time. Kim (2001) used 
Fourier features to identify 10 individuals using 20 attributes. The over specification, of 
attributes to output classes, does not provide any level confidence on the extrapolation of 
these results into the operational environment. Dokur et al. (1999) found that wavelet 
measures were significantly better able to classify heartbeats than Fourier features. Israel 
et al. (2008) fused ECG, Pulse Oximetry, and blood pressure data for human 
identification (Figure 12). The results showed a significant improvement in performance 
and reduction in false alarms, particularly when fusion is performed at the feature/ 
attribute level. 

Figure 12 Fused cardiac performance biometrics for human identification (see online version for 
colours) 

 

Biel et al. (2001) used temporal and electrical potential amplitude features and combined 
them using principal components analysis. Similar experiments were performed by Shen 
et al. (2002) and Wang et al. (2008). Van Oosterom et al. (2000) performed similar 
experiments using multiple lead ECG data, extracting features from the individual leads, 
and then performing the PCA analysis. No corresponding enrolment rates or data 
handling issues were provided by these authors. 

An eigenPulse method was developed by Israel et al. (2003) and refined by Irvine  
et al. (2008). For eigenPulse, the processing follows that commonly used for face 
recognition (Turk and Pentland, 1991). The raw temporal values from the individual  
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segmented heartbeats are temporally normalised to a specific attribute length. The 
normalised heartbeats are then put into a PCA and the highest eigen features are used as 
attributes for the classifier. Although performance is lower than for the attribute based 
systems (number identified/number enrolled), all 130 subjects were capable of being 
enrolled (number identified/total population). Therefore, the overall performance for the 
eigenPulse technique was higher (number enrolled < total population). The downside 
with eigen features is that the researcher does not know the physical mechanics behind 
the individual attributes that explains the significance of the attributes.  

The next level of feature extraction is converting the data into attributes through a 
mathematical process. Chiu et al. (2009) used energy attributes of ECGs computed from 
wavelets to classify heartbeats between normal patients and those with cardiac maladies. 
Palaniappan and Krishnan (2004) moved a window across the segmented heartbeats and 
generated textures for each window position. These were placed into a classifier for 
human identification. Plataniotis et al. (2006) generated a cosine transform from the 
temporal data. 

4.2 Algorithms and decision rules  

As in the early stages of other datasets, researchers have applied multiple pattern 
recognition algorithms and fusion strategies to the heartbeat data. The supervised 
classification articles focused on statistical and neural network approaches (Tatara and 
Cinar, 2002). Irvine et al. (2003) used linear discriminant analysis (LDA) to separate 
among the individuals. The LDA statistically models the hypersurfaces that best separate 
the subjects’ attributes in the feature space. This is different from a neural network 
approach that performs a similar function through a stochastic optimisation. The latter 
separator is not required to be linear (Guler and Ubeyli, 2005). Neural network attributes 
themselves can be fuzzified (FNN) to improve their sensitivity (Israel, 1999). FNNs have 
been used (Osowski and Linh, 2001; Acharya et al., 2003; Arif et al., 2010) to classify 
normal heartbeats from cardiac maladies. 

Data and information fusion have been performed for heartbeat data. At the lowest 
data fusion level, Agrafioti and Hatzinakos (2008) integrated multiple ECG leads for 
human identification. The attributes extracted from the data were combined using PCA. 
A limited number of features were used to classify a small number of individuals. Finlay 
et al. (2010) performed a similar experiment by oversampling the torso with 117 sensors. 
Then, using the raw electrode signals, the researchers generated synthetic traces  
or eigenleads. The authors were rewarded by a dramatic improvement in SNR. 
Operationally this is impractical for biometric applications, but interesting nonetheless.  

5 Performance evaluation  

At this stage, the data used during different parts of the process must be defined. Training 
data are examples used by the developer to generate their classifiers. Labels may or may 
not be important for the training data depending upon the classification algorithm used. 
The gallery data are those examples used for matching by the verification or 
identification. Gallery data examples have known labels. Test data are those examples  
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used by the system to evaluate performance or in the operational environment. For 
evaluation, the test labels are used to confirm whether the system performed correctly or 
not. In the operational environment, the test examples have no confirmed labels. 

Verification and identification are two different functions (Israel, 2006). Verification 
is a 1-to-1 match. For verification, the differences between the test and gallery data are 
compared to a distance or acceptance threshold. Verification is evaluated using ROC 
curves to characterise detection performance versus false alarm rate (FAR). Tilbury et al. 
(2000) and Theofanos et al. (2007) explored the role of confidence intervals in biometric 
verification.  

5.1 Blood pressure identification  

Irvine (2003) collected blood pressure measurements from 17 adults: males and females. 
Data consisted of baseline and meditative tasks alone. The heartbeats were normalised 
and power spectrum attributes were extracted. Six trials were performed; across segments 
and across tasks. Independent training and testing produced a 65% correct heartbeat 
classification and 93% of the individuals based on voting across heartbeats (Figure 13). 

Figure 13 Blood pressure classification 

 

5.2 Pulse oximetry identification  

Irvine (2003) collected pulse oximetry signals from 17 adults: males and females. Data 
consisted of baseline and meditative tasks alone. The heartbeats were normalised and 
power spectrum attributes were extracted. Six trials were performed; across session  
and across tasks. Independent training and testing produced a 51% correct heartbeat 
classification and 87% of the individuals. Due to the relatively poor performance, human 
identification using blood pressure and pulse oximetry is limited. 
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Figure 14 Pulse oximetry classification 

 

5.3 ECG identification  

To use ECG as a biometric, individuals will enrol their information into the security 
system. After enrolment, the user’s ECG will be interrogated by the system. Unlike the 
traditional static biometrics, the heartbeat varies with stress. The state of anxiety and the 
relative orientation of the ECG electrodes with respect to their heart’s potential centre are 
unknown. As the number of access controllers and individuals within a facility increases, 
the number of interrogations grows rapidly. To mitigate data handling issues, the number 
of descriptors for a given individual must be minimised. The results show a high degree 
of agreement of generalisation across the tasks, except for the VR driving. VR driving  
is the highest stressed task. Upon review of the VR driving data, many of the subjects’ 
data still contained muscle flexor noise that was not removed with the current filter 
(Figure 15.). 

Identification is a higher function in the detection, classification, recognition, and 
identification (DCRI) hierarchy. Identification occurs after an individual is detected. The 
contingency matrix, Figure 16, is a visualisation for classification performance 
(Congalton and Green, 1993). The columns represent the known input classes. The rows 
indicate how the discriminant function(s) classified or assigned the data. The correctly 
identified samples (heartbeats) lie along the major diagonal, i.e. the known input labels 
equal the assigned labels. If the maximum number of heartbeats within a row or column 
occurs along the major diagonal, then the subject is correctly identified; i.e. voting. 
Errors occurring along the column are errors of omission. For a verification system, these 
are false negative errors where an authorised user cannot gain access. Errors along the 
row are errors of commission. Commission errors are false acceptance errors, where an 
unauthorised user gains accesses the system, intruders. The identification error rate cited 
here is the average of the omission and commission values. 
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Figure 15 Classification performance for heartbeats and identification. Labels indicate training 
data. Test data was the remainder of the database. The ‘all data’ was an average of 
segments across all tasks (i.e. train segment 1 – test segments 2, 3, 4, 5, and 6)  
(see online version for colours) 

 

Figure 16 highlights a number of interpretation issues. First, the contingency matrix is 
not symmetrical. So, the rate of false acceptance between individuals is not the same. The 
number of heartbeats acquired is not the same for all individuals. The variable number of 
examples percolates through the contingency matrix. For Subject B, approximately 30% 
of the heartbeats have a commission error with Subject J. These heartbeats are over 50% 
of the total assigned to Subject J. If the two subjects contained the same number of 
heartbeats, then no confusion or false acceptance of Subject B to Subject J would occur. 

Figure 16 Sample contingency matrix (see online version for colours) 

 

5.4 Dissemination  

The concept of information dissemination is largely omitted from the early system 
design. Common problems caused by an incomplete design or an integration of material 
solutions with a firm functional decomposition are stovepiped or non-interoperable  
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applications, inefficient data processing and exploitation, and inappropriate size of the 
hardware. Usually these problems are realised when a system is transitioned into an 
operational environment.  

It is expected that heartbeat biometrics will be used in remote locations away from 
standard guard based access protections. Yu et al. (2008) showed that biometrics working 
in conjunction with a token based system provides additional protection unavailable to 
token based systems alone. Hernandez et al. (2001) showed the privacy concerns with 
exploiting the internet and HIPAA compliance. Kozat et al. (2009) performs a process 
similar to steganography to embed metadata into the ECG trace without losing the 
subject specific information. Similarly, Sufi and Khalil (2009) developed an algorithm to 
encrypt ECG based upon a source key strategy for simple un-encryption. 

These studies point to a basic challenge for biometric systems based on heartbeat, 
namely the protection of personal information. Unlike fingerprint and face, the heartbeat 
data could contain health-related information as well as the personal identification 
information. This suggests a need for greater care in the collection, storage, and 
transmission of such data. Although technological advances can help address this 
challenge, it is fundamentally a policy issue that must be considered in any operational 
application.  

6 Conclusions  

This paper reviewed the processing, exploitation, and dissemination of heartbeat data for 
biometric applications. We laid down the system’s functional blocks and those 
researchers performing in these areas. The limitations of the data and algorithms to 
characterise individuals are being reduced though supplementary understanding of the 
operational environment.  

The expected performance for a biometric system will depend on the nature of the 
biometric task, the sensing and processing system, system enrolment procedures, and the 
sensing environment. For example, identity verification of cooperative individuals using 
contact measurements appears within reach for a modest number of enrolled individuals 
(Irvine and Israel, 2009). Extending these methods to the general identification problem 
will require additional development, but current methods hold promise. Three important 
issues, however, require further investigation: stability of the signatures over long period 
(e.g. years), robustness to variation in mental and emotional state, and scalability to 
larger populations. The initial analysis of these issues suggests that robustness and 
scalability can be addressed (Irvine et al., 2008; Israel et al., 2009). Extensions to non-
contact sensing methods, especially with non-cooperative subjects, will require more 
development to insure reliable acquisition of the cardiac signal. 
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