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Abstract: It is a widely held belief among designers of social tagging systems 
that tag clouds represent a useful tool for navigation. This is evident in the 
increasing number of tagging systems offering tag clouds, which hints towards 
an implicit assumption that tag clouds support efficient navigation. In this 
paper, we test this assumption from a network-theoretic perspective, and show 
that in many cases, it does not hold. We first model navigation in tagging 
systems and then simulate the navigation process in such a graph. We analyse 
the navigability of three tagging datasets with regard to different user interface 
restrictions imposed by tag clouds. Our results confirm that tag clouds have 
efficient navigation properties in theory, but they also show that popular user 
interface decisions, such as ‘pagination’ significantly impair their navigability. 
Finally, we identify a number of avenues for further research and the design of 
novel tag cloud construction algorithms. 
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1 Introduction 

In social tagging systems such as Flickr and Delicious, tag clouds have emerged as an 
interesting alternative to traditional forms of navigation and hypertext browsing. The 
basic idea is that tag clouds provide navigational clues by aggregating tags and 
corresponding resources from multiple sources, and by displaying them in a visually 
appealing fashion. Users are presented with these tag clouds as a means for exploring and 
navigating the resource space in social tagging systems. 
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While tag clouds can potentially serve different purposes, there seems to be an 
implicit assumption among engineers of social tagging systems that tag clouds are 
specifically useful to support navigation. This is evident in the large-scale adoption of tag 
clouds for interlinking resources in numerous systems such as Flickr, Delicious, and 
BibSonomy. However, this navigability assumption has hardly been critically reflected 
[with some notable exceptions, e.g., Hearst and Rosner (2008)], and has largely remained 
untested in the past. In this paper, we will demonstrate that the prevalent approach to tag 
cloud-based navigation in social tagging systems is highly problematic with regard to 
network-theoretic measures of navigability. In a series of experiments, we will show that 
the navigability assumption only holds in very specific settings, and for the most common 
scenarios, we can assert that it is wrong. 

While recent research has studied navigation in social tagging systems from  
user interface (Mesnage and Carman, 2009; Rivadeneira et al., 2007; Sinclair and 
Cardew-Hall, 2008) and network-theoretic (Neubauer and Obermayer, 2009) 
perspectives, the unique focus of this paper is the intersection of these issues. With that 
focus, we want to answer questions such as: how do user interface constraints of tag 
clouds affect the navigability of tagging systems? And how efficient is navigation via tag 
clouds from a network-theoretic perspective? 

Particularly, we will first: 

1 investigate the intrinsic navigability of tagging datasets without considering user 
interface effects 

2 and then take pragmatic user interface constraints into account 

3 next, we will demonstrate that for many social tagging systems, the navigability 
assumption does not hold 

4 and then we will use our findings to illuminate a path towards improving the 
navigability of tag clouds 

5 thereafter, we will argue that any new tag-cloud construction algorithm will need to 
balance the trade-off between navigational and semantic penalties induced by the 
network generation process 

6 and finally, we will present a simple method for estimating the semantic penalty. 

To the best of our knowledge, this paper is among the first to study what we have called 
the navigability assumption of tag clouds, i.e., the widely held belief that tag clouds are 
useful for navigating social tagging systems. One of the main results of this paper is a 
more critical stance towards the usefulness of tag clouds as a navigational aid in tagging 
systems. We argue that in order to make use of the full potential of tag clouds, new ways 
of thinking about tag cloud algorithms are needed. 

The paper is structured as follows: in Section 2, we present our network-theoretic 
approach to assessing navigability of tagging systems. Section 3 describes the analysed 
datasets. Section 4 presents and discusses the analysis results. Based on our findings, we 
call for and discuss new ideas for tag cloud algorithms in Section 5. In Section 6, we 
sketch a new algorithm for constructing tag clouds and present a method for estimating 
the semantic properties of the network generated by that algorithm. Section 7 provides an 
overview of related work. Finally, Section 8 concludes the paper and presents directions 
for future work. 
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2 Network-theoretic model of navigation in tagging systems 

A tagging dataset is typically modelled as a tripartite hypergraph with V = R ∪ U ∪ T, 
where R is the resource set, U is the user set, and T is the tag set (Cattuto et al., 2007; 
Schmitz et al., 2006; Ramezani et al., 2009). An annotation of a particular resource with a 
particular tag produced by a particular user is a hyperedge (r, t, u), connecting three 
nodes from these three disjoint sets. 

Such a tripartite hypergraph can be mapped onto three bipartite graphs connecting 
users and resources, users and tags, and tags and resources. For different purposes, it is 
often more practical to analyse one or more of these bipartite graphs. For example, in the 
context of ontology learning, the bipartite graph of users and tags has been shown to be 
an effective projection (Mika, 2007). 

In this paper, we focus on tag-resource bipartite graphs. These graphs naturally reflect 
the way users are supposed to adopt tag clouds for navigating social tagging systems. For 
example, in many tagging systems, tag clouds are intended to be used in the following 
way: 

1 the system presents a tag cloud to the user 

2 the user selects a tag from the tag cloud 

3 the system presents a list of resources tagged with the selected tag 

4 the user selects a resource from the list of resources. 

5 the system transfers the user to the selected resource, and the process potentially 
starts anew. 

We will study this general interaction schema and model it with a simulated user moving 
along the edges of the tag-resource bipartite graph and alternately visiting tag and 
resource nodes. 

To that end, we introduce a network-theoretic approach for assessing the navigability 
and the efficiency of navigability in such a bipartite graph. Ever since Milgram’s (1967) 
small world experiment, researchers aimed to understand ‘navigability’ and in particular 
‘efficient’ navigation of networks (for details see Section 7). Among others, two 
important results stem from this line of research: 

1 there exist short paths between people (nodes) in a social network 

2 people are able to navigate ‘efficiently’ through the network having only local 
knowledge of the network, i.e., knowing only their personal contacts. 

Kleinberg (2000a, 2000b, 2001) and also independently Watts et al. (2002) formalised 
these properties concluding that a navigable network has a short path between all – or 
almost all – nodes in the network (Kleinberg, 2001). Formally, such a network has a low 
diameter bounded polylogarithmically, i.e., by a polynomial in logN, where N is the 
number of nodes in the network, and there exists a giant component, i.e., a strongly 
connected component containing almost all nodes (Kleinberg, 2001). Additionally, an 
‘efficiently’ navigable network possesses certain structural properties so that it is possible 
to design efficient decentralised search algorithms (algorithms that only have local 
knowledge of the network) (Kleinberg, 2000a, 2000b, 2001). The delivery time (the 
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expected number of steps to reach an arbitrary target node) of such algorithms is 
polylogarithmic or at most sub-linear in N. 

User navigation in hypertext systems is naturally modelled as a decentralised search, 
i.e., at each particular node in the network, users select a new node having only local 
knowledge of the network and following the idea that the selected node would bring them 
closest to their destination node. We use this model to investigate the navigability of tag 
clouds next. 

3 Experimental setup 

In the following, we conduct experiments aiming to shed light on the navigability of tag 
clouds in social tagging systems. We are particularly interested in studying how design 
decisions, such as what tags to include in a tag cloud or how many tags to display, effect 
the navigability of tag clouds. While, today, designers often base such decisions on 
intuition or heuristics, it is our goal to study the consequences of these decisions 
experimentally, i.e., by exploring their empirical effects on the network. 

In our experiments, we used three datasets covering a range of different settings. 

• Dataset Austria-Forum: This dataset consists of annotations from an Austrian 
encyclopaedia called Austria-Forum.1 The dataset contains 32,245 annotations and 
12,837 unique resources. The system is at an early phase of adoption, i.e., not many 
users currently contribute new tags. 

• Dataset BibSonomy: This dataset2 contains nearly all 916,495 annotations and 
235,339 unique resources from a dump of BibSonomy (Hotho et al., 2006) until 
2009-01-01. Annotations from known spammers have been excluded from the 
dataset. This dataset is obtained from a more mature tagging system. 

• Dataset CiteULike: This dataset contains 6,328,021 annotations and 1,697,365 
unique resources and is available online.3 Again, this is a dataset acquired from a 
more mature tagging system. 

Dataset Austria-Forum represents a tagging system at an early stage of adoption. Datasets 
BibSonomy and CiteULike are tagging systems which have reached a certain level of 
maturity (i.e., attracted a larger set of active users). While all three systems adopt tag 
clouds for navigational purposes, their specific approaches vary. However, because the 
datasets contain complete information about the tripartite graph, we can experimentally 
manipulate the data in a way that simulates different approaches to tag cloud construction 
consistently across all datasets. We will describe how we manipulate the data to simulate 
different user interface constraints next. 

3.1 User interface issues 

The first user interface restriction which we model is the size of a tag cloud, i.e., the 
maximal number of tags displayed in a tag cloud. While different tagging systems 
implement different design choices, we can simulate alternative choices across all 
datasets. For example, in some tagging systems the maximum number of tags in a tag 
cloud might be 20, while in others it might be much larger. 
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Another important issue of tag clouds is the algorithm used to select the tags to 
display in a tag cloud. While, in theory, there are many ways to compute and visualise tag 
clouds (Eda et al., 2009; Kaser and Lemire, 2007; Rivadeneira et al., 2007), in practice, 
many tagging systems follow a simple resource-specific, TopN algorithm. In  
resource-specific approaches to tag cloud construction, only tags assigned to the 
corresponding resources are considered. In TopN approaches, the top n tags with the 
highest resource-specific frequency are chosen for display in the corresponding tag cloud. 
In cases where less than n tags per resource are available, the remaining slots are left 
empty. 

For the experiments aiming to study the navigational assumption, we used the  
TopN algorithm (because it is the most common) to reconstruct simulated networks of 
resource-specific tag clouds for our three datasets. 

Popular tags in a mature tagging system can cover hundreds or even thousands of 
resources, which exceeds the pragmatic limits of a system’s user interface. In this 
situation, tagging systems usually resort to limiting the set of resources being displayed 
for a given tag (e.g., by sorting and ‘paginating’ the list of corresponding resources). To 
model such limits, we introduce a pragmatic parameter, the length of the resource list 
being presented, and denote it henceforth with k. 

In the majority of tagging systems, the resource lists presented after selecting a tag 
are usually sorted reverse-chronologically (the resources most recently tagged are listed 
first). For simplicity, in our experiments, we select the k resources for k-limited resource 
lists randomly. 

4 Results 

4.1 Intrinsic navigability of tagging systems 

We start our study by analysing the navigability of tagging systems in a synthetic 
network-theoretic case, i.e., without taking any user interface restrictions into account. 
The first row in each of Tables 1(a), 1(b), and 1(c) present the obtained results. The 
results show the existence of a giant component connecting almost all of the nodes 
(98%), as well as the existence of a low effective diameter (less than 7, i.e., it is less than 
polynomial in logN, see Figure 1). 

The only exception here is the Austria-Forum dataset. We speculate that the reason 
for that is due to the system being in an early adoption stage. While the effective diameter 
of the Austria-Forum dataset is larger than the one in the two other datasets (see  
Figure 1), it is still limited polylogarithmically, whereas the giant component contains 
only 77% of nodes. This result suggests that the navigability assumption depends on the 
adoption stage of the tagging system under investigation, i.e., the assumption may only 
hold for more mature tagging systems BibSonomy or CiteULike. We leave the issue of 
identifying the point in time where immature tagging systems transition to tagging 
systems exhibiting more useful navigational properties to future research. At this point, 
we simply observe that the navigation assumption is sensitive to the stage of adoption of 
a tagging system. 
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Table 1 Navigational properties of the Austria-Forum, BibSonomy, and CiteULike tagging 
systems 

(a) Austria-Forum 

UIR GC ED UIA NADT 
None 0.77 10.73 None Sub-lin. 
n = 5 0.75 10.99 TopN Sub-lin. 
n = 10 0.76 11.3 TopN Sub-lin. 
n = 20 0.76 11.97 TopN Sub-lin. 
n = 30 0.76 11.05 TopN Sub-lin. 
k = 5 0.36 12.04 Chron. Unnav. 
k = 10 0.47 11.16 Chron. Unnav. 
k = 20 0.56 10.31 Chron. Unnav. 
k = 30 0.6 10.68 Chron. Unnav. 

(b) BibSonomy 

UIR GC ED UIA NADT 
None 0.98 6.96 None Sub-lin. 
n = 5 0.94 6.8 TopN Sub-lin. 
n = 10 0.97 6.87 TopN Sub-lin. 
n = 20 0.98 6.84 TopN Sub-lin. 
n = 30 0.98 6.91 TopN Sub-lin. 
k = 5 0.31 6.82 Chron. Unnav. 
k = 10 0.4 6.62 Chron. Unnav. 
k = 20 0.5 6.61 Chron. Unnav. 
k = 30 0.54 6.65 Chron. Unnav. 

(c) CiteULike 

UIR GC ED UIA NADT 
None 0.98 6.85 None Sub-lin. 
n = 5 0.93 6.97 TopN Sub-lin. 
n = 10 0.95 7.07 TopN Sub-lin. 
n = 20 0.97 7.17 TopN Sub-lin. 
n = 30 0.97 6.98 TopN Sub-lin. 
k = 5 0.27 6.89 Chron. Unnav. 
k = 10 0.36 6.95 Chron. Unnav. 
k = 20 0.44 6.91 Chron. Unnav. 
k = 30 0.48 7.05 Chron. Unnav. 

Notes: UIR = UI restriction, GC = giant component, ED = effective diameter, UIA = UI 
algorithm, NADT = navigation algorithm delivery time, Chron. = chronological 
algorithm, Sub-lin. = sub-linear, Unnav. = unnavigable network. 
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Figure 1 Hop plots for three different tagging datasets (see online version for colours) 

 

Notes: We can observe the shrinking diameter phenomenon. The two mature datasets 
(Bibsonomy and CiteULike, the two lines on the left) exhibit a small diameter, 
while the Austria-Forum (a tagging system in an early adoption phase, the line on 
the right) exhibits a larger diameter, and a larger ratio of long distances between 
nodes. 

Source: Leskovec et al. (2005) 

Result 1 The usefulness of tag clouds for navigation is sensitive to the phase of 
adoption of the social tagging system. 

Figures 2(a), 2(b), and 2(c) show tag (blue), resource (green), and degree (red) 
distributions for the analysed datasets. The tag and resource distributions were obtained 
by analysing a unidirectional bipartite graph, i.e., a graph with only directed links from 
tags to resources. The out-degree distribution and the in-degree distribution in this graph 
correspond to tag distribution and to resource distribution respectively. For certain ranges 
of degrees, both distributions are power law distributions. There are deviations in the tail 
of the tag distribution – these stem from the system tags assigned to imported resources 
[see Figures 2(b) and 2(c)]. The vertical line in the tail of Figure 2(c) comes from the 
existence of synonym tags in the dataset. The resource distributions exhibit an 
exponential cut-off in the tail [see Figure 2(b)], a deviation in the tail stemming from a 
test resource [see Figure 2(a)], and a power law distribution as in Figure 2(c). 

The degree distribution of the undirected bipartite graph [the red line in Figures 2(a), 
2(b) and 2(c)] combines both tag and resource distributions. For lower degrees, the 
combined degree distribution takes the form of the resource distribution, i.e., the number 
of resources with low frequencies dominates the number of tags with low frequencies. 
For higher degrees, the combined distribution takes the form of the tag distribution, i.e., 
there are more tags with high frequencies than resources with high frequencies. The tag 
distribution is two or more orders of magnitude larger than the resource distribution, i.e., 
the tag distribution strongly dominate the resource distribution for higher degrees. That 
means that the network hubs (high-degree nodes) are the ‘head’ tags, i.e., the top tags for 
TopN tag cloud construction algorithms. 
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Figure 2 Tag, resource, and degree distributions for the three datasets, (a) Austria-Forum  
(b) BibSonomy (c) CiteULike (see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

Notes: We can observe that the tag degrees are two or more orders of magnitude greater 
than the resource degrees, i.e., the tag distribution strongly dominates the resource 
distribution for higher degrees. Therefore, the network hubs (high-degree nodes) 
are the ‘head’ tags – the top tags for TopN tag cloud construction algorithms. It is 
therefore to expect that limiting of the tag cloud size will not influence the 
navigability of the tag-resource network as the hub nodes are still present in the 
network. 



   

 

   

   
 

   

   

 

   

   42 D. Helic et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Due to the existence of a giant component and a low diameter, tagging systems are 
intrinsically navigable. In Adamic et al. (2001) show the existence of efficient 
decentralised navigation and search algorithms for power law networks. In principle, a 
user could first navigate to a hub (which is typically achieved in a few hops in a power 
law network) and since hubs have a large out-degree, one can reach the destination node 
easily. The delivery time of the algorithm is sub-linear, although the number of inspected 
nodes in the worst-case is O(N), since sometimes the user needs to inspect all outgoing 
links from a hub. 

Result 2 Tagging networks are navigable power-law networks. For power law 
networks, efficient sub-linear decentralised navigation algorithms exist. 

4.2 Tag cloud size 

Rows two to five of Tables 1(a), 1(b), and 1(c) show the results of applying the TopN 
algorithm to limit the tag cloud size on the analysed datasets. From a network-theoretic 
point of view, limiting the tag cloud size means limiting the out-degree of the resource 
nodes in the bipartite graph. The out-degree of the resource nodes is two orders of 
magnitude smaller then the out-degree of the tag nodes, indicating there are no resource 
‘hubs’ in the network. Therefore, limiting the tag cloud size does not influence the 
network to a large extent. In other words, the structure of the network is still maintained, 
i.e., the network remains a navigable network with navigation efficiency inherent to 
power law networks. 

Result 3 Limiting the tag cloud size to practically feasible sizes (e.g., 5, 10, or more) 
does not influence navigability. 

4.3 Pagination 

Rows six to nine of Tables 1(a), 1(b), and 1(c) contain the results of simulating 
pagination with resource lists sorted reverse-chronologically. Even without experiments, 
it is evident that limiting the number of links going out from a tag node has destructive 
effects on the resulting network. In other words, limiting the out-degree of hub nodes in a 
power-law network destroys the connectivity of the network as a whole. Our experiments 
show exactly that: the giant component collapses, and the largest strongly connected 
component now only contains around 50% or less nodes. As such, pagination destroys 
network navigability, and the navigability assumption only holds when we assume that 
users would be able and willing to inspect long lists (> 10.000) of resources per tag, 
which is not reasonable. For example, we know from search query log research that users 
rarely click on links beyond the first result page (Zhang et al., 2009). This yields our final 
result: 

Result 4 Limiting the out-degree of high frequency tags (e.g., through pagination with 
resource lists sorted reverse-chronologically) leaves the network vulnerable to 
fragmentation. This destroys navigability of prevalent approaches to tag 
clouds. 
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5 Implications 

The previous analysis illustrated the vulnerability of tagging networks to the pagination 
effect, where a limit is placed on the number of links going out from paginated tags, i.e., 
tags with frequency higher than the pagination parameter k. This vulnerability is mainly 
due to the simplicity of the common pagination algorithm, i.e., the resource list is simply 
sorted reverse-chronologically and only the k most recently tagged resources are 
presented to the user. The algorithm does not take into account the current user context, 
i.e., the resource where the user clicks on a paginated tag. Rather the same  
reverse-chronologically resource list is presented for a given paginated tag throughout the 
system. 

Let us now investigate possibilities to recover the navigability of tagging networks by 
means of alternative tag construction algorithms. To this end, we introduce an adapted 
pagination algorithm. A simple generalisation of the pagination algorithm is to select k 
different resources out of all resources tagged with a given paginated tag, depending on 
the current user context, i.e., depending on the resource where the user activates a 
paginated tag. Let us denote the resources list of a given paginated tag t with Rt. In this 
case, a particular selection of resources for t becomes a function of a given resource and 
parameter k, i.e., Lt = f(r, k). In other words, each paginated tag is replaced by as many 
resource-specific tags (tr) as there are resources in its resource list. Each resource-specific 
tag is then connected to resources computed by f(r, k). The pseudo-code of the 
generalised algorithm is given in Figure 3. 

We now discuss some potential functions f(r, k) for selecting resources from the 
available resource pool and analyse their influence on network navigability. 

Figure 3 Generalised pagination algorithm 

1: Input: G = <V, E>, r, t, k 
2: for all r ∈ Rt do 
3:  add tr to V 
4:  add (r, tr) to E 
5:  Lt ← f(r, k) 
6:  for all rr ∈ Lt do 
7:   add (tr, rr) to E 
8:  end for 
9: end for 
10: remove t from V 

5.1 Random link selection 

A first obvious choice for f(r, k) is to select k resources uniformly at random. This 
approach generates a random graph as introduced by Erdos and Renyi (1960) for each 
given paginated tag. As Bollobás and de la Vega (1982), and Bollobás and Chung (1988) 
showed, graphs generated uniformly at random are typically connected and have – with a 
high probability – a diameter bound by logN (already for out-degrees k ≥ 3). However, 
since there are no structural clues in a randomly generated network, a decentralised 
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search algorithm will need to inspect, in the worst case, all nodes of the network in order 
to reach a destination node from the given starting node. 

Table 2 shows the results of a random pagination algorithm on the three test datasets. 
All three networks become strongly connected with a giant component even for low 
values of k. As expected, all three networks also possess a low diameter. 

Table 2 Navigational properties of the Austria-Forum, BibSonomy, and CiteULike tagging 
systems with a random pagination algorithm 

(a) Austria-Forum 

UIR GC ED UIA NADT 

k = 5 0.86 11.7 Random Linear 

k = 10 0.86 11.02 Random Linear 

k = 20 0.85 10 Random Linear 

k = 30 0.84 10.42 Random Linear 

(b) BibSonomy 

UIR GC ED UIA NADT 

k = 5 0.99 8.75 Random Linear 

k = 10 0.99 6.97 Random Linear 

k = 20 0.99 6.75 Random Linear 

k = 30 0.99 6.46 Random Linear 

(c) CiteULike 

UIR GC ED UIA NADT 

k = 5 0.99 7.98 Random Linear 

k = 10 0.99 7.88 Random Linear 

k = 20 0.99 7.13 Random Linear 

k = 30 0.99 6.86 Random Linear 

Notes: UIR = UI restriction, GC = giant component, ED = effective diameter,  
UIA = UI algorithm, NADT = navigation algorithm delivery time. 

5.2 Hierarchical network model 

In Kleinberg (2001), he introduced the hierarchical network model and elegantly proved 
that it is possible to design efficient decentralised search algorithms for such networks 
with a delivery time polynomial in logN (for details see Section 7). Put simply, Kleinberg 
showed that, if the nodes of a network can be organised into a hierarchy, then such a 
hierarchy provides a probability distribution for connecting the nodes in the network. The 
resulting network is efficiently navigable. A special case of the hierarchical network 
model is given when there is a constant number of links leaving a node, i.e., when the 
out-degree of a node is limited by a parameter k as it is the case with pagination. In this 
case, the tree leaves contain so-called clusters of nodes, i.e., a collection of a certain 
constant number of nodes. 

Thus, we developed a hierarchical network generator that: 



   

 

   

   
 

   

   

 

   

    Are tag clouds useful for navigation? 45    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

1 sorts the resource list of a given paginated tag by frequency 

2 creates resource clusters of size ten by traversing the sorted resource list sequentially 

3 creates a balanced b-ary (b = 5) tree where the number of leaves is equal to the 
number of the resource clusters 

4 traverses the tree in post-order from left to right and attaches resource clusters to the 
tree leaves 

5 uses this tree structure to obtain the link probability distribution for connecting a 
resource-specific tag node with resources of a given paginated tag. 

Table 3 Navigational properties of the Austria-Forum, BibSonomy, and CiteULike tagging 
systems with a hierarchical pagination algorithm 

(a) Austria-Forum 

UIR GC ED UIA NADT 
k = 5 0.85 12.03 Hier. Polylog. 
k = 10 0.86 10.62 Hier. Polylog. 
k = 20 0.85 9.29 Hier. Polylog. 
k = 30 0.84 9.71 Hier. Polylog. 

(b) BibSonomy 

UIR GC ED UIA NADT 

k = 5 0.99 8.82 Hier. Polylog. 
k = 10 0.99 7.62 Hier. Polylog. 
k = 20 0.99 6.94 Hier. Polylog. 
k = 30 0.99 6.75 Hier. Polylog. 

(c) CiteULike 

UIR GC ED UIA NADT 
k = 5 0.99 8.76 Hier. Polylog. 
k = 10 0.99 7.6 Hier. Polylog. 
k = 20 0.99 6.36 Hier. Polylog. 
k = 30 0.99 5.89 Hier. Polylog. 

Notes: UIR = UI Restriction, GC = Giant Comp., ED = Eff. Diameter, UIA = UI 
Algorithm, NADT = Navigation Algorithm Delivery Time Hier. = Hierarchical 
Algorithm, Polylog. = polylogarithmic. 

It is important to note that the tree creation process follows the statistical properties of the 
tagging dataset only; it has no inherent semantic rationale. As such, it serves primarily as 
a statistical tool to improve the efficiency of navigability from a network-theoretic 
perspective. Table 3 provides an overview of the results of the structural network analysis 
performed with the three real life datasets. 

Another important observation is that in our model each paginated tag is a source of a 
network generated by a hierarchy. These networks are themselves connected through tag 
cooccurrence in the dataset, i.e., since tags overlap and share resources such shared 
resources link different generated networks. This makes it more difficult to estimate the 
delivery time of a decentralised search algorithm possessing only the local knowledge. If 
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the algorithm is extended to have knowledge of all the hierarchies used in the generation 
of the networks, then this additional information might be useful in finding a destination 
node faster. 

However, more theoretical work is needed to offer a proof of this intuitive 
assumption. In addition, it would be interesting to test these ideas empirically, e.g., by 
implementing the algorithm and applying it to the real life datasets. Another interesting 
problem is the fitting of parameters for the hierarchical network model, e.g., what is the 
optimal combination of the cluster size and the maximum number of children, with 
respect to the size of the resource list and the pagination parameter k. 

5.3 Calculation of resource hierarchies 

The hierarchy used in our experiments so far does not possess any semantic grounding. It 
is a synthetic hierarchy trying to optimise navigational aspects of the generated network. 
However, improvements of our algorithm will need to take the semantics of the dataset 
into account by identifying a set of resource (metadata) attributes. For example, resource 
attributes might be the date of creation, authors, other tags, or even attributes external to 
the system such as URLs, full-text, or title. Similar to tag-resource bipartite graphs, a 
collection of metadata attributes and resources can be always represented as yet another 
bipartite graph. Thus, the discussion that follows applies for arbitrary resource metadata. 
However, for simplicity reasons we refer henceforth only to tag-resource bipartite graphs. 

Let us, here, shortly discuss possible approaches to obtain semantically useful 
resource hierarchies. We can calculate resource hierarchies by applying e.g., modern 
hierarchical clustering algorithms such as K-means (Dhillon et al., 2001) or affinity 
propagation (Frey and Dueck, 2007) to the tag vectors (see e.g., Plangprasopchok et al., 
2010). Alternatively, if we deal with text resources it is possible to apply K-means or 
affinity propagation on the term vectors. However, in general case, e.g., in the case when 
we deal with non-textual resources such as images or videos we have only tag vectors. 

In Heymann and Garcia-Molina (2006) the authors argue that similarity between tags 
(the tag vectors are sparse) are not sufficiently great for purely similarity based 
hierarchical clustering methods. Therefore, the authors designed a new algorithm tailored 
to the specifics of the social tagging data. This new algorithm produces so called 
folksonomies4 – folk-generated taxonomies – which are tag hierarchies. In Benz et al. 
(2010) the authors extend this idea and design yet another folksonomy creation 
algorithm. 

The input for those folksonomy creation algorithms is the so-called tag similarity 
graph – an unweighted graph with tags as nodes. Two nodes are linked to each other if 
their similarity is above a predefined similarity threshold. In the simplest case, the 
threshold is defined through tag overlap – if the tags do not overlap in at least one 
resource than they are not linked to each other in the tag similarity graph. As the first 
step, the algorithm calculates node centralities producing a generality ranking where the 
most general tags come in the top positions. Then, the algorithm starts by a single node 
tree with the most general tag as the root node and proceeds by iterating through the 
generality ranking and adding each tag to the tree – the algorithm calculates the 
similarities between the current tag and each tag currently present in the tree and adds the 
current tag as a child to its most similar tag. 
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The algorithm is extensible as it is possible to apply different similarity and centrality 
measures, e.g., the algorithm described in Heymann and Garcia-Molina (2006) work with 
the cosine similarity and closeness centrality, whereas the algorithm described in Benz  
et al. (2010) works with the cooccurrence and degree centrality. 

The folksonomy algorithms produce tag hierarchies, however, we are interested in 
producing resource hierarchies. A possible approach is to adapt the folksonomy 
algorithms to produce global resource hierarchies or resource hierarchies of a given 
paginated tag instead of global tag hierarchies. Thus, the adapted algorithm: 

1 maps the bipartite tag-resource graph onto a resource-resource cooccurrence graph 

2 compiles a generality ranking by calculating a centrality of nodes in the  
resource-resource graph 

3 builds the cooccurrence matrix between resources for similarity calculation 

4 starts with the most general tag as the root node 

5 iterates through the generality ranking and attaches the next resource from the 
ranking to its most similar resource from the tree. 

In addition (to obtain better navigational properties), we can introduce hierarchy 
branching factor b and add new resources to the tree only to those resources that still have 
available spots for child resources. 

The future work can concentrate on implementation and evaluation of such 
algorithms. One problem that the future work needs to address is scalability –  
resource-resource mappings of tagging datasets tend to produce huge networks with 
billions of links. 

6 Navigational and semantic penalty 

The previous section shows that one way of designing an efficiently navigable network in 
a tagging system is to classify the resources of a given paginated tag into a hierarchy. 
Thus, to design a navigable network, the pagination algorithm needs to organise these 
resource attributes into a hierarchy. At the same time, it is difficult to expect that an 
algorithm taking into account the semantics of resources can produce an optimal 
hierarchy that optimises navigability of the tagging system as a whole. Rather, the 
semantic algorithm will tend to produce an unbalanced tree with a variable cluster size. 
As a consequence, the navigational structure generated by such an algorithm will be  
sub-optimal, i.e., a decentralised search algorithm will need to take more steps 
(investigate more nodes) to find a destination node. We will call this effect the 
navigational penalty. Of course, the pagination algorithm might be altered to produce a 
tree closer to the optimal tree from the navigational point of view. This, however, seems 
possible only by breaking semantics to a certain extent. We will call this contrasting 
effect the semantic penalty. This reveals an essential trade-off which tag cloud 
construction algorithms will need to address: balancing the navigational and semantic 
penalties. 
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Let us illustrate the navigational and semantic penalties with an example. Suppose we 
have 1,000 resources about Austrian cities tagged with ‘Austria’. A particular tagging 
system might decide to paginate that tag with a pagination parameter of k = 20 (listing 20 
resources per page). Firstly, the system would need to semantically classify the resources 
into a clustered hierarchy. For example, it could take geography as the criteria for 
creating clusters: each cluster corresponding to an Austrian province. However, the size 
of the clusters varies and the province of Vienna (the capital of Austria) might dominate, 
since it contains, say, 500 resources. Generating the network from such an unbalanced 
hierarchy will result in a navigational penalty, whereas a new classification of the 
resources taking into account the Vienna districts as a further geographical refinement to 
balance the cluster size may cause a semantic penalty, if the Vienna province is 
represented at a finer level of detail than other provinces. 

6.1 Measuring semantic penalty 

In the following, we present a simple method for estimating the semantic penalty of 
different pagination algorithms. 

If we ignore pagination and show the complete resource list Rt whenever a tag t is 
selected, t is connected through this resource list to the set of its cooccurring tags. We 
represent the tag cooccurrence of t by means of the cooccurrence vector ct. The 
dimensions in this vector correspond to tags, and the value of a particular dimension is 
the number of resources that share both t and the dimension tag. 

Taking into account pagination, a particular selection of resources for t is the set Lt, 
which is a function of r, k, and the resource hierarchy in question. We can now introduce 
a resource-specific cooccurrence vector of a given tag t and denote it as .r

tc  Again, the 
vector dimensions are tags, and the vector values correspond to the number of shared 
resources between t and a particular dimension tag. However, the resources have to 
belong to Lt now. 

We take the complete cooccurrence vector ct of a given tag t as the ground truth. The 
resource-specific cooccurrence vector r

tc  of t is than compared against ct using cosine 

similarity cs (cosine of the angle between vectors ct and )r
tc  to estimate its alignment 

with the ground truth: 

( ),cs
⋅

=
r

r t t
t t r

t t

c c
c c

c c
 (1) 

In the next step, we calculate the arithmetic mean of cosine similarities over all resources 
of a given paginated tag t: 

( )1 ,
t

t
t r R

cs cs
R ∈

= ∑ r
t tc c  (2) 

Then, we calculate the arithmetic mean of tcs  over all tags: 

1
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Finally, we obtain a single numerical value – the semantic penalty of a given pagination 
algorithm as: 

1sp cs= −  (4) 

We subtract from 1 to express the fact that maximum similarity would be equivalent to 
the absence of any semantic penalty. In addition, we can vary the parameter k to see  
how the semantic penalty is distributed with the size of the paginated page presented to 
users. 

Let us illustrate the intuition behind the semantic penalty with the following example. 
In a given tagging dataset, semantics emerge through relations between tags, e.g., the tag 
Austria might be related via cooccurrence to tags such as Vienna (sharing a single 
resource), Europe (sharing two resources), and Alps (sharing two resources). Through 
pagination, some of the links disappear because resources and their corresponding tags 
are omitted from the resource list, e.g., after pagination Austria is related only to Vienna. 
Let Austria be the first dimension, Vienna the second, Europe the third, and Alps the 
fourth. We have: 

1 2
3 3

0 0
1 1
2 0
2 0

cs sp

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

r
austria austriac c  

Thus, the semantic penalty measures the extent to which the list of displayed resources is 
semantically different from the global semantics of the tag. 

Figure 4 compares the semantic penalty of the reverse chronological, random, and 
synthetic hierarchical (see Section 5-B) pagination algorithms over all datasets. The 
preliminary results show that the semantic penalty does not depend on the selection of the 
pagination algorithm but only on the length k of the paginated list. This result is 
consistent over all datasets. 

Although the results are only preliminary they contain an interesting observation: 
While the semantic penalties for smaller k are still significant, as k grows the semantic 
penalty decreases very quickly. Even though the algorithms do not optimise for 
semantics, paginated lists of length 20 or more do not induce significant semantic 
penalties. Consistently, over all datasets and all algorithms the semantic penalty for k 
greater than 20 drops to ≈1%. The exception here is again the Austria-Forum dataset (the 
semantic penalty is marginal even for small k): there are only few hub tags in the network 
and that reduces the pagination effect on the semantics. 

Result 5 Limiting the pagination list length to practically feasible sizes (e.g., 20, 30, or 
more) does not introduce a significant semantic penalty. 

The further investigation should evaluate semantically optimised algorithms to identify 
potential differences between the observed and new semantics-aware pagination 
algorithms. However, as the semantics is not significantly impaired by pagination (at 
least for higher values of k), future research can concentrate on measuring the 
navigational penalty and optimising pagination algorithms for navigation. 
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Figure 4 The semantic penalty induced by different pagination algorithms for the three datasets, 
(a) Austria-Forum (b) BibSonomy (c) CiteULike (see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

Notes: The two mature datasets (Bibsonomy and CiteULike) exhibit larger semantic  
penalties, while the Austria-Forum (a tagging system in an early adoption phase) 
exhibits significantly smaller penalties – there are fewer paginated hub tags in the 
Austria-Forum and therefore, the pagination effect on the semantics is marginal. 
The semantic penalty does not depend on the pagination algorithm but solely on 
the number of resources shown in the paginated list. While semantic penalty for 
smaller values of k, e.g., 5 and 10 is still significant, limiting the paginated list  
to a practically feasible length, e.g., 20, does not impair semantics (the semantic 
penalty drops to ≈1%). 
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7 Related works 

We start our review of related work with a brief overview of network-related research. 
Research on network navigability has been inspired by Milgram’s (1967) small world 
experiment. In this experiment, selected persons from Nebraska received a letter they 
were then asked to send through their social networks to a stockbroker in Boston. The 
striking result of the study was that, for those letters reaching the destination, the average 
number of hops was around six, i.e., the population of the USA constituted a ‘small 
world’. While the conclusions have been challenged (Kleinfeld, 2002), this experiment 
has attracted a great deal of interest in the research community. 

Numerous researchers analysed Milgram’s experiment trying to create network 
models and generators able to produce such ‘small world’ networks (see e.g., Kochen, 
1989). The lattice model by Watts and Strogatz (1998) mimics a real life social network, 
where people are primarily connected to their neighbours with a few ‘long-range’ 
contacts. The networks generated by this model have, like the random graph model 
(Bollobás and de la Vega, 1982), a giant component and a diameter bound by logN. 

Kleinberg analysed the second result of the Milgram’s experiment, the ability of 
people to find a short path when there is such a path between two nodes (Kleinberg, 
200a, 2000b, 2001). He concluded that there are structural clues in such networks, which 
allow people to find a short path efficiently and argued that for an ‘efficiently’ navigable 
network there exists a decentralised search algorithm with delivery time polynomial in 
logN. 

Kleinberg also designed a number of network models such as 2D-grid models 
(Kleinberg, 2000b), hierarchical models (Kleinberg, 2001), and group models (Kleinberg, 
2001), and showed that for certain combinations of parameters, efficient decentralised 
search algorithms exist. 

Particularly, hierarchical network models (Kleinberg, 2001) are based on the idea 
that, in many settings, the nodes in a network might be classified according to taxonomy. 
The taxonomy can be represented as a b-ary tree and network nodes can be attached to 
the leaves of the tree. For each node v, we can create a link to all other nodes w with the 
probability that decreases with h(v, w) where h is the height of the least common ancestor 
of v and w in the tree. For a constant out-degree, the nodes are clustered and then the 
clusters are attached to the tree. The link distribution defined by f(h) = (h + 1)–2b–h 
generates a navigable network with a decentralised search algorithm with delivery time of 

4(log ).bO N  
In related research of tagging systems, tag clouds have been characterised as a way to 

translate the emergent vocabulary of a folksonomy into social navigation tools (Sinclair 
and Cardew-Hall, 2008; Dieberger, 1997). Social navigation itself represents a  
multi-dimensional concept, covering a range of different issues and ideas. A distinction 
between direct and indirect social navigation, e.g., highlights whether navigational clues 
are provided by direct communication among users (e.g., via chat), or whether 
navigational clues are indirectly inferred from historical traces left by others (Millen and 
Feinberg, 2006). Based on this distinction, our work only focuses on indirect social 
navigation in the sense that it studies the effectiveness of traces (‘tags’) left by users in 
tagging systems. Other types of social navigation emphasise the need to show the 
presence of others users, to build trust among groups of users, or to encourage certain 
behaviour (Millen and Feinberg, 2006). 
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Researchers have discussed the advantages and drawbacks of tag clouds, suggesting 
that tag clouds are a useful mechanism when users’ search tasks are general and 
explorative (e.g., learn about Web 2.0), while tag clouds provide little value for  
specific information-seeking tasks (e.g., navigate to http://www.cnn.com) (Sinclair and 
Cardew-Hall, 2008). While the paper at hand focuses on network-theoretic aspects, 
cognitive aspects of navigation have been studied previously using, e.g., SNIF-ACT (Fu 
and Pirolli, 2007) and social information foraging theory (Pirolli, 2009). Other work has 
studied the motivations of users for tagging (Strohmaier et al., 2010; Koerner et al., 
2010), and how they influence emergent semantic (as opposed to navigational) structures. 
The navigational utility of single tags has been investigated (Chi and Mytkowicz, 2008) 
with somewhat disappointing results. With time, the tags become harder and harder to 
use as they lose specificity and reference too many resources. Such tags are exactly those 
paginated tags where new pagination algorithms are needed. 

Navigation models for tagging systems have been also discussed recently. In 
Ramezani et al. (2009), authors describe a navigation framework for tagging systems. 
The authors apply the framework to analyse possible attacks on tagging systems. In 
principle, the framework identifies a navigation channels as any combination of the basic 
elements of a tagging system (users, tags, and resources). Thus, the specific combination 
which we investigated in this paper can be summarised as the resource-tag or tag resource 
navigation channel. 

Recent literature also discusses algorithms for the construction of tag clouds. The 
ELSABer algorithm (Li et al., 2007) represents an example of such an effort aimed 
towards identifying hierarchical relationships between annotations to facilitate browsing. 
The work by Aouiche et al. (2008) is another example, introducing entropy-based 
algorithms for the construction of interesting tag clouds. However, these algorithms have 
not found widespread adoption in current social tagging systems. In addition, empirical 
studies of tagging systems have, e.g., focused on comparing navigational characteristics 
of tag distributions to similar distributions produced by library terms (Heymann et al., 
2010). 

Our work contributes to an increased theoretical understanding about the navigability 
of current tag cloud algorithms in social tagging systems. Our experiments identify 
empirical problems related to the navigability of tag clouds in three real world tagging 
systems. 

8 Conclusions 

The motivation for this research was to examine and test the widely held belief that tag 
clouds support efficient navigation in social tagging systems. We have shown that for 
certain specific, but popular, tag cloud scenarios, the so-called navigability assumption 
does not hold. The results presented in this paper make a theoretical and an empirical 
argument against existing approaches to tag cloud construction. Our work thereby both 
confirms and refutes the assumption that current tag cloud incarnations are a useful tool 
for navigating social tagging systems. While we confirm that tag-resource networks have 
efficient navigational properties in theory, we show that popular user interface decisions 
(such as ‘pagination’ combined with reverse-chronological listing of resources) 
significantly impair navigability. Our experimental results demonstrate that popular 
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approaches to using tag clouds for navigational purposes suffer from significant 
problems. 

Building on recent research results from network theory, in particular hierarchical 
network models, we have illustrated a path towards constructing more efficiently 
navigable tag cloud networks, which are less vulnerable to pagination influences. Our 
findings suggest that engineers who want to design effective tag cloud algorithms have to 
essentially strike a balance between semantic and navigation penalties, in order to make 
navigation in social tagging systems both efficient and effective. We also presented a 
simple method for estimating the semantic penalty. The method is based on measuring 
cosine similarity between the non-paginated (ground truth) and algorithmically generated 
paginated tag cooccurrence vectors. The future work needs to investigate the possibilities 
for measuring the navigational penalty. 

We conclude that in order to make full use of the potential of tag clouds for 
navigating social tagging systems, new and more sophisticated ways of thinking about 
designing tag cloud algorithms are needed. 
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