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Abstract: Recently, due to the surge in the use of social networks, link 
prediction has become an essential technique which could enable service 
providers to anticipate future friendships between users based on the network 
structure and personal data so as to enhance consumer loyalty and experience. 
Undoubtedly, link prediction analysis becomes increasingly difficult when 
social networks expand quickly, particularly in light of the major advancements 
in complex social network modelling. Prior studies which predicted  
social links based on static network settings may have ignored the dynamic 
variation of networks over time. In this research, an end-to-end model,  
convolution-3D-based long-short-term memory (abbreviated as C3D-LSTM), 
is developed to integrate the convolution neural network (CNN) and  
long-short-term memory (LSTM) network for effective link prediction. We 
employ 3D convolution to detect subtle patterns in social network snapshots, 
capturing short-term spatial-temporal features. LSTM layers then interpret 
these features to model the network’s long-term temporal dynamics. To 
demonstrate its practicability, extensive experiments are conducted to show that 
C3D-LSTM surpasses current state-of-the-art techniques and delivers 
remarkable performance. 

Keywords: deep learning; convolution neural network; CNN; link prediction; 
long-short-term memory network; LSTM; social network. 
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1 Introduction 

During the past few decades, information technology has evolved rapidly, and internet 
communication continues to change. Social network services including YouTube, 
Facebook, and Twitter, to name a few, have become the most popular and widely 
accepted platforms in recent years. Social networks are rapidly forming and evolving on 
the internet as a result of these new services, fostering the use of online tools by users to 
expand their networks, disseminate their messages, and engage in political campaigns. 
According to several studies (Adamic and Adar, 2003; Chen, 2018; Chen et al., 2021, 
2012, 2014; Hvitfeldt and Silge, 2021; Pemantle, 2014; Zhang and Zhang, 2019), 
approximately 53.6% of the global population uses at least one social media platform, 
which could indicate the significance of social science. Social network analysis (SNA) 
focuses on the examination of connections between objects, which is consistent with the 
notion of data mining to depict the interaction between people, events, and occurrences in 
the field of data media. 

Link prediction is an important technique in SNA which aims to predict potential 
connections or links between individuals or entities within a social network. Link 
prediction algorithms leverage the existing network structure and various attributes of 
nodes and edges to estimate the likelihood of future connections. Most prior studies (Yu 
et al., 2017; Mahmoudi et al., 2019; Bliss et al., 2014; Zhu and Cao, 2020; Li et al., 2014; 
Jheng et al., 2021) discussed prediction based on the static social network and the 
existing network topology and available node attributes. However, social networks are, in 
general, dynamic; i.e., the network varies with time. Some new users and relations might 
be created and established; likewise, some obsolete ones might be deleted as time passes. 
Obviously, dynamic networks are more complex, and predictions become more difficult 
and less accurate as the input changes over time. It is typical to use a number of graphs, 
each with fixed nodes and different links, to simulate a dynamic network. As a result of 
the inability to recognise patterns of evolution, static network link prediction techniques 
like similarity indices and network embedding algorithms have varying degrees of 
success. In addition, graph attention networks (GATs), graph convolution networks 
(GCNs), and other GNNs (Heidari and Iosifidis, 2021; Jasny et al., 2022; Murata and 
Moriyasu, 2007; Wang, 2022) have demonstrated their ability to handle  
large-dimensional graph-structured data; nevertheless, they can only perform static 
network analysis. 

We use an example, shown in Figure 1, to illustrate the changes in dynamic networks 
over time, which could infer nodes and links constantly evolving and cause problems of 
precise prediction. In Figure 1, there are six users in each area, respectively A, B, C, D, E 
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and F. G1, G2 and Gn are social network graphics. In G1, we can see that A has 
relationships with D and E, B has relationships with E and F, and C has a relationship 
with F. After some time, the graphic has changed. In G2, A and C users start to get in 
touch with other users, and B has stopped contact with E with whom they had contact in 
G1. 

Figure 1 Example of dynamic relationships among friends on social networks (see online version 
for colours) 

 

In this paper, we introduce a novel approach for link prediction in dynamic social 
networks through a framework we refer to as convolution-3D with long-short-term 
memory (C3D-LSTM). This framework is specifically designed to handle the complex 
spatio-temporal dynamics inherent in social network data. The core of our proposed 
method lies in the integration of 3D convolution with LSTM (Hvitfeldt and Silge, 2021) 
networks. The use of 3D convolution is pivotal in capturing the spatial relationships 
across different snapshots of the social network. Unlike traditional 2D convolution, 
which only considers spatial information in two dimensions, 3D convolution extends this 
capability by adding a third dimension, effectively allowing the model to learn from a 
series of network snapshots as if they were a continuous spatial-temporal block. This is 
particularly advantageous for understanding the evolution of links in a dynamic social 
network where spatial relationships can change over time. Following the 3D convolution 
layers, the LSTM component plays a crucial role. LSTMs are a type of recurrent neural 
network (RNN) (Xu et al., 2021) known for their ability to learn and remember long-term 
dependencies in sequential data. In the context of our model, the LSTM layers are 
employed to interpret the temporal features extracted by the preceding 3D convolution 
layers. The integration of LSTM is based on its gated mechanism, which effectively 
captures temporal dependencies and variations in the social network over time. 

The architecture of C3D-LSTM is designed in a progressive stacking manner. 
Initially, the convolutional architecture processes the input data, extracting meaningful 
spatial features from multiple snapshots of the social network. Subsequently, these 
extracted features are fed into the LSTM layers, where the temporal dynamics are 
analysed. The rationale behind this architecture is to leverage the strength of 
convolutional networks in feature extraction from high-dimensional spatial data and to 
combine it with the prowess of LSTMs in handling temporal sequences. This synergistic 
combination allows C3D-LSTM to simultaneously learn and model both spatial and 
temporal features of dynamic social networks. To empirically validate our approach, we 
conducted in-depth tests using datasets from real-world businesses. The results 
demonstrate that our C3D-LSTM model significantly outperformed several state-of-the-
art techniques, providing a robust solution for dynamic link prediction in social networks. 
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The following are the significant contributions of this paper. 

• We present a unified model, C3D-LSTM, which exploits convolution feature fusion 
with LSTM for the link prediction of dynamic social networks. This model collects 
structural features from various snapshot networks using 3D-convolution and learns 
temporal structure using LSTM. In order to accurately anticipate the behaviour of 
dynamic networks, the model can successfully learn spatiotemporal properties. 

• The majority of prior related approaches can only forecast newly added connections 
in the network. However, our method can predict all links that will come, vanish, or 
remain constant to provide precise predictions of the whole dynamic network 
evolution. 

• We verify the effectiveness of C3D-LSTM on dynamic networks and compare it to 
alternative baseline techniques. Our model clearly outperforms state-of-the-art 
techniques on a number of measures, and it displays excellent generalisation and 
resilience in actual datasets with all mentioned metrics. 

The organisation of the paper is as follows. Section 2 discusses the literature review and 
Section 3 presents the proposed methodology in details. We provide the experimental 
settings and results in a performance study in Section 4, and conclude the paper in 
Section 5. 

2 Literature review 

The evolution of linkages and nodes is becoming increasingly essential as social 
networks grow, and social network prediction is a popular topic of study. In order to 
make the problem simpler, dynamic networks are frequently represented as a series of 
graphs. Evidently, the forecast depends on many pictures in different ways. We now 
provide relevant findings on both traditional and deep learning link prediction techniques. 

2.1 Conventional link prediction 

The greater the resemblance, the more probable it is that two nodes will join. Many 
dynamic network and link prediction tools, including local and global structural similarity 
indices, use the network’s topological information to determine how similar paired nodes 
are to one another. 

For the purpose of abstracting social networks and the exogenous elements that 
support network structure, Adamic and Adar (2003) created a system for mining internet 
communications. It has potential uses in community discovery, community labelling, and 
automated real-world relationship inferencing. In order to forecast links in a series of 
dynamically changing networks, Yu et al. (2017) proposed a link prediction model with 
space and time conformity (LIST). LIST combines the spatial topology of the network in 
each timestamp with the temporal network evolution to characterise dynamic networks as 
time functions. In order to overcome the link prediction problem, Mahmoudi et al. (2019) 
proposed a novel approach based on time and user to forecast connections based on 
changes in user communities. To address the issue of short-term link prediction, Bliss  
et al. (2014) presented the covariance matrix adaptation evolution strategy (CMA-ES) 
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technique for link prediction; 16 fields and node similarity indexes are combined using 
CMA-ES. Future linkages can be predicted using the semantic subgraphs and graph 
attention network (SESGAT) approach proposed by Zhu and Cao (2020). To determine 
the significance of various semantic subgraphs for link prediction, SESGAT uses various 
types of semantic information in various semantic subgraphs. Our strategy outperforms 
other cutting-edge algorithms in terms of prediction performance, according to 
experimental findings on actual social networks. 

By combining temporal data, community structure, and node centrality in the 
network, Ibrahim and Chen (2014) presented a technique for link prediction in dynamic 
networks. The rationale for our proposal is the loss of some significant topological 
information in dynamic networks due to static graph prediction. Following the 
construction of a dynamic weighted social attribute network, Zeng et al. (2016) provided 
a technique for extracting various kinds of characteristics from the weighted social 
attribute network. The classifier for link prediction was trained using these 
characteristics. To address the drawbacks of the CNGF and KatzGF conventional link 
prediction algorithms, Dong et al. (2013) proposed two revised techniques. KatzGF is 
based on global information, whereas CNGF is based on local data. In order to forecast 
linkages, Yu et al. (2014) proposed a novel approach based on the random walk 
algorithm that constructs network topology and uses knowledge of enhanced node 
properties. The results demonstrate that the strategy we propose can increase prediction 
accuracy and those node properties will have an impact on connection formation. In order 
to provide a low-dimensional feature representation of the node-pair instances, Rahman 
and Hasan (2016) proposed the GRATFEL approach, which employs an unsupervised 
feature learning method based on short graphlet transition characteristics. To reduce the 
reconstruction error, GRATZEL models the feature learning problem as an optimisation 
encoding work. Using gradient descent, it resolves this optimisation problem. Jie 
described an approach for a dynamic multi-dimension network in Jie (2015). It creates a 
dynamic, multi-dimension network using a mobile social network model, and suggests a 
suitable connection prediction. Using metrics of the ‘proximity’ of nodes in a network, 
Liben-Nowell and Kleinberg (2003) defined the issue of “can we infer which new 
interactions among its members are likely to occur in the near future?” as the link 
prediction problem. 

Papadimitriou et al. (2012) proposed a buddy recommendation system that is both 
quicker and more accurate. The goal of Marjan et al. (2018) was the thorough 
assessment, analysis, discussion, and evaluation of cutting-edge link prediction 
techniques in dynamic social networks. Using weighted graph proximity metrics, Murata 
and Moriyasu (2007) proposed a technique which can enhance the social network’s 
ability to forecast links. The outcome demonstrates that the suggested strategy is superior, 
particularly when the target social networks are quite dense. To enhance the effectiveness 
of the forecast, Tan and Pan (2019) proposed an approach that takes the dynamic 
topology of social networks into account. The methodology uses three metrics: the  
time-varying weight, the degree of common neighbour change, and the closeness of 
common neighbour relationships. Popescul and Ungar’s (2007) comprehensive strategy 
proposed using statistical relational learning techniques to create link prediction models. 
Building regression models using relational database data involves creating prospective 
predictors through a systematic search of the query space, which are then evaluated to see 
if they should be included in the logistic regression. In order to increase the accuracy of 
link prediction, Zhang and Zhang (2019) proposed a weighted directed network link 
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prediction algorithm based on user behaviour information, and investigated the 
possibility of using user interaction behaviour information as the weight of the weighted 
network edge. 

The previous optimisation techniques, however, are computationally costly and have 
limitations due to the current similarity index. Traditional link prediction techniques, 
such as those based on similarity, commonly take advantage of the network topology’s 
common traits and exhibit excellent generalisability. The time-varying qualities, 
nevertheless, place certain restrictions on them. 

2.2 Machine learning-based link prediction 

In addition to using traditional similarity-based prediction techniques, deep learning or 
machine learning are also used to determine the ideal similarity for accurate network link 
prediction. To anticipate dynamic linkages, Chen et al. (2021) created a unique  
encoder-LSTM-decoder (E-LSTM-D) deep learning model. This model can handle  
long-term prediction issues and is suitable for networks of various scales with well-tuned 
structures. Additionally, it has the ability to automatically learn both structural and 
temporal information in a single framework, allowing it to anticipate relationships that 
have never before appeared in the network. The conditional temporal restricted 
Boltzmann machine (ctRBM) is a brand-new approach to deep learning that Chen et al. 
(2012) proposed. This approach is based on the variability in individual transitions as 
well as the neighbourhood effect. Long-short-term memory (LSTM) is a brand-new, 
effective, gradient-based strategy that Hvitfeldt and Silge (2021) introduced to address 
the issue that learning to retain information over lengthy time intervals via recurrent 
backpropagation takes a very long time. 

Shao et al. (2019) proposed an approach that combines machine learning and 
hierarchical representation learning for networks (HARP) to enhance link prediction. The 
rationale for the proposal is because Node2Vec will neglect the network structure. In 
order to increase prediction accuracy, Liu et al. (2020) suggested a link prediction 
technique for weighted dynamic networks that combines statistical modelling and 
supervised learning. In order to overcome the difficulties of predicting the future picture 
of the network and analysing the network by calculating all the necessary overall 
measures, Michalski et al. (2012) proposed a technique that makes use of machine 
learning technologies to forecast how specific network measures will change in the 
future. 

In order to evaluate the Enron corpus, Klimt and Yang (2004) created a testing 
platform. Email is automatically categorised into the user’s designated folders, and 
information is extracted from emails that have been arranged in time order. This study 
examined the relevance to email forecasting and offered a cutting-edge classifier. In order 
to exchange video input information, Ouyang et al. (2019) proposed a unique MTL 
architecture that first blends 3D convolution neural networks (CNNs) and LSTM with the 
MTL process. Their study broke down a movie into numerous pieces and used a hybrid 
3D CNN and LSTM model to extract the sequential characteristics from these video 
snippets. For wireless network problems, Yao et al. (2016) proposed a model based on a 
hybrid CNN-LSTM prediction model network log (Selvarajah et al., 2020). With the use 
of fault prediction technology, staff members can plan ahead to rectify problems, speed 
up the process, and lessen the amount of damage that failures create. An approach called 
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a weighted directed network link prediction is presented by Zhao and Zettsu (2018). The 
degree to which users engage with one another has a significant impact on link prediction 
accuracy. In order to weight the network, take into account the user’s private information, 
and analyse their interests, we employ specific interactive behavioural features of social 
network users. 

In the realm of dynamic link prediction, our proposed C3D-LSTM model 
distinguishes itself by adeptly capturing both structural and temporal dynamics of entire 
network snapshots, a capability not sufficiently addressed in most existing models. 
Unlike traditional methods that primarily rely on static similarity indices, C3D-LSTM 
innovatively integrates 3D convolution with LSTM to process complex spatio-temporal 
features, enabling a more nuanced understanding of network evolution. This model 
excels in discerning subtle spatial changes and patterns while capturing long-term 
temporal dependencies, overcoming the limitations of current models that focus either on 
static structural features or temporal aspects in isolation. The holistic approach of  
C3D-LSTM not only enhances prediction accuracy but also offers a comprehensive 
understanding of network dynamics, setting it apart in both effectiveness and robustness 
compared to state-of-the-art techniques in dynamic link prediction tasks. 

3 Proposed model: C3D-LSTM 

In this section, we define the problem and discuss the detail of the C3D-LSTM model for 
forecasting dynamic network links. The proposed model has the ability to learn the 
structural and temporal characteristics of dynamic networks in advance of the upcoming 
addition and removal of links. 

Definition 1 (dynamic network): Given a sequence of graphs, {G1, …, GT}, where  
Gk = (V, Ek) denotes the kth snapshot of a dynamic network. Let U be the set of all users 
and Ek subset V * V. The adjacency matrix of Gk is denoted by Ak with the element ak;i,j = 
1 if there is a directed link from vi to vj and ak;i,j = 0 otherwise. 

Link prediction in static networks uses the observed distribution of edges to identify the 
real edges. During the inference phase, dynamic networks, on the other hand, have the 
ability to adaptively change their structure based on the input samples, giving them 
significant advantages over static networks. Link prediction in dynamic networks also 
fully utilises the data retrieved from earlier static networks to examine the network’s 
evolutionary patterns, then uses the observed evolutionary patterns to forecast the 
network’s future state. We utilise the adjacency matrix as the input and output of the 
prediction model since it is particularly successful at capturing the network topology. A 
dynamic network’s network snapshots are all intimately connected to one another. 
However, employing a single snapshot G_T for prediction may have the issue of having 
insufficient data. As a result, we favour using many continuous social network snapshots 
for prediction. Our objective is to use 3D convolution to extract the structural 
characteristics of each snapshot network and LSTM to learn the temporal structure. 

Definition 2 [dynamic network link prediction (DNLP)]: Given a sequence of graphs with 
length N, S = {Gt–N, …, Gt–1}, DNLP aims to learn a function that maps the input 
sequence S to G_t. Dynamic networks evolve over time; as shown in Figure 2, new links 
may appear in the future, and old links may disappear. The main purpose of DNLP is to 
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predict the node or link that will appear and disappear the next time. As an illustration, 
Figure 2 depicts the network’s progression throughout time T. We can see that outdated 
links (1, 2), (3), and (5) vanish and new links (1, 3), (1, 4) arise, each of which is 
indicated by a red mark. 

Figure 2 An example of the evolution of a social network (see online version for colours) 

 

 

Figure 3 The system architecture of C3D-LSTM (see online version for colours) 

  

In this study, we propose a distinctive model C3D-LSTM. First, data are categorised 
using sliding windows, but because the most recent data contain too many zeros, the 
algorithm will not group each dataset with it. Following clustering, we add the data to the 
training model for training. There, we utilise 3D-convolution to extract data features for 
learning; 3D-convolution may extract more features to enhance the training outcome. 
Using LSTM in this case, we input the prediction region after 3D-convolution to forecast 
the data’s accuracy, and output the AUC value. We did not select RNN since it lacks a 
gate to remember long-term values, which is why we output AUC to see it all. We 
discover that when Conv3D receives additional training data, the value will increase. 

As the system architecture shows in Figure 3, the proposed C3D-LSTM uses  
3D-convolution to learn the social structure of the cell state c and the hidden state h of 
any given snapshot, and uses LSTM to learn the temporal information of the state of each 
link. The proposed model is a 3D-convolutional embedded LSTM which translates the 
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extracted feature mapping back to the original space. The projected network will be 
produced by C3D-LSTM, which will also execute network link prediction. The following 
section provides the details of the proposed model. 

3.1 3D-convolution and LSTM modules of C3D-LSTM 

The CNN is a popular model for identifying pictures. When we recognise a picture, we 
first take note of its structure and dissect it into several forms; CNN bases its model on 
this process. Convolution layer and pooling layer are two components of CNN that 
together may significantly lessen the neural network’s training workload. In order to 
extract the features from a picture, the convolution layer divides it into many images after 
convolution. By doing this, the neural network is not required to receive the feature 
values of the entire image in order to classify the image, which lessens the burden on the 
network. Pooling layer is a technique for compressing photos while keeping crucial data. 
Max-pooling, a technique that employs sliding windows to take feature values and 
choose the highest value, decreases the amount of data that has to be calculated and the 
number of parameters that the system needs to compute. 

Figure 4 3D-convolution operation of C3D-LSTM on dynamic social networks  
(see online version for colours) 

 

We propose the C3D-LSTM model, which is based on the same principle as the basic 
CNN but adds a third dimension, to enhance the prediction accuracy in dynamic 
networks. Convolution in the spatial dimension is known as Conv2D; in 3D-convolution, 
both space and time are involved. Figure 5 illustrates a convolution block for  
3D-convolution. 3D-convolution can be utilised for training more data, extracting more 
features, and significantly enhancing prediction quality. Hence, C3D-LSTM adopts 3D 
convolutional filters to capture local features, encodes a list of things into a three-way 
tensor, and collects high-order interactions in a feedforward fashion. In particular, by 
adding the straightforward powerful convolution module, we enable interactions between 
non-adjacent snapshots. 

According to the aforementioned system architecture shown in Figure 3, the  
C3D-LSTM model principally relies on two state values: the cell state c, which is used to 
store the long-term information, and the hidden state h, which is used to extract the  
short-term information of the last output. The key component of C3D-LSTM is that 
during the forward process, a cell state is present, resulting in a lengthy transmission of 
information across the cell state. We must take into account how neighbours’ hidden 
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states and neighbouring cells affect the hidden state of the node when performing the 
DNLP job. Since the hidden state and the cell state represent various types of 
information, respectively, we perform convolution operations on the cell layer state and 
the hidden layer state using 3D-convolutional models for the next phase. 

Then, we introduce another critical module in C3D-LSTM, LSTM, as shown in 
Figure 3. The primary purpose of LSTM is to address the gradient disappearance and 
gradient explosion issues that arise during the training of lengthy sequences. The LSTM 
model can successfully capture long-term temporal correlations of any duration. Through 
the usage of three separate gates, input gate it, output gate ot, and forget gate ft, LSTM 
successfully maintains long-term dependence. The main unit of LSTM has a memory cell 
Ct, and the neuron input xt and output ht at time step t. We introduce each component and 
the learning process as follows. 

Figure 5 LSTM operation of C3D-LSTM (see online version for colours) 

 

A memory cell candidate and the current input are either added to long-term memory or 
not via the input gate. In order to write to a memory cell, a neuron’s output must first 
travel through a gate known as the input gate. It is impossible to write content if the input 
gate is closed, and the neuron network learns when to close it: 

( )1t i t i t ii σ W h U x b−= + +  (1) 

The forget gate decides when to empty and forget the content of the memory cell and 
when to keep it in place. The preceding words will be filtered out by this valve, for 
instance, if the current word is a new subject or the opposite of the previous words. On 
the other hand, it may be preserved in memory, generally by the sigmoid function: 

( )1t f t f t if σ W h U x b−= + +  (2) 

The output gate controls whether the value from the memory cell can be read by the 
outside world, and when it is closed, neither the value nor the content of the memory can 
be read. The new cell state is passed to the tanh function, which multiplies its output by 
the output of the sigmoid function to determine the information that the hidden state 
should contain. Finally, the hidden state is output as the current cell, and the new cell 
state and the new hidden state are transferred to the following time step: 

( )1t o t o t oo σ W h U x b−= + +  (3) 
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A memory cell serves as a conduit for the delivery of pertinent information. The memory 
cell may always hold the message while processing the sequence. Older messages can 
thus be protected from the negative effects of recent memory: 

1t t t t tc f c i c−= +    (4) 

In order to prevent the past output from being forgotten, LSTMs operate in a hidden state 
where they aggregate previous output, mix it with the current input to obtain the desired 
result, and then transmit the result to subsequent LSTMs: 

( )tanht t th o c=   (5) 

3.2 C3D-LSTM model construction 

For enhanced accuracy in DNLP, it is imperative to thoroughly train the C3D-LSTM 
model. This training is designed to align the output probability matrix closely with the 
adjacency matrix at time t. In regression prediction scenarios, the L2 distance as shown in 
equation (6) is commonly used to gauge the similarity between the forecast and the true 
values: 

( )2
0 0

( , ) ( , ), 2
N N

t t
i j

L pow P i j A i j
= =

= − ∗  (6) 

2 regL L L= + β  (7) 

In this context, N represents the count of nodes in the snapshot at time t, At denotes the 
actual adjacency matrix at time t, and Pt symbolises the output probability matrix at the 
corresponding moment. Given the inherent sparsity of the network, relying exclusively 
on the L2 distance as the loss function is likely to skew the expected results towards zero. 
Therefore, we also use a regularisation term called Lreg in order to prevent such 
overfitting to some extent. The whole training process loss is therefore defined as in 
equation (7) where the best will be discovered throughout the model training process, and 
is a parameter to trade-off the weighting of L2 and Lreg. By computing the sum of squares 
of the ownership weight in the C3D-LSTM model, the regularisation loss Lreg is 
determined. We use Adam as our model’s optimiser in order to minimise equation (7). 

4 Experiments 

In this section, we use five real datasets, Contact, Enroll, Radoslaw, Ford, and Toyota, 
collected by individual connection in real scenarios to evaluate the performance of the 
proposed C3D-LSTM model, and compare the effectiveness and robustness of the 
proposed methods with the state-of-the-art models. All real datasets are detailed as 
follows and are summarised in Table 1. 

 

• Contact Dataset (http://konect.cc/networks/contact/) (Kunegis, 2013): This dynamic 
network dataset captures human contact through wireless devices, representing close 
physical interactions. Links between individuals are timestamped, recorded every 20 
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seconds, allowing multiple connections to be documented simultaneously. The high-
frequency data collection in this dataset provides a unique challenge in handling 
temporal granularity, which is crucial for accurate link prediction in rapidly changing 
social dynamics. 

• Radoslaw Dataset (https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi: 
10.7910/DVN/6Z3CGX) (Rossi and Ahmed, 2015): This is the internal email 
communication network between employees of a mid-sized manufacturing company. 
The network is directed and nodes represent employees. The left node represents the 
sender and the right node represents the recipient. Edges between two nodes are 
individual emails. 

• Enron Dataset (https://www.cs.cmu.edu/~enron/) (Kessler, 2010): Representing an 
email network of a medium-sized corporation, each node corresponds to an 
employee, with links formed by email exchanges. The dataset exhibits temporal 
spikes in email activity, often extending over several days before a sudden drop, 
possibly due to holidays or weekends. This irregularity in communication patterns 
presents a challenge in understanding temporal dependencies and interpreting 
periods of inactivity, which are critical for predicting future links. 

• Ford and Toyota Datasets (https://www.mobile01.com/) (Agarwal et al., 2020): 
Sourced from mobile01, a forum discussing vehicles, these datasets encapsulate user 
interactions in chat rooms over a decade from 2006 to 2016. We segmented Toyota 
into 36 time periods and Ford into 40, based on the observation that discussions often 
span several days. The extended interaction duration in these datasets provides a 
different temporal challenge, necessitating the model to capture long-term 
dependencies and changes in communication trends over time. 

Table 1 Summarisation of real datasets 

Dataset #User #Edge #Social graph 
Contact Dataset (http://konect.cc/networks/contact/) 274 391,969 583 
Radoslaw Dataset (https://dataverse.harvard.edu/dataset. 
xhtml?persistentId=doi:10.7910/DVN/6Z3CGX) 

167 54,891 270 

Enron Dataset (https://www.cs.cmu.edu/~enron/) 151 29,369 160 
Ford Dataset (https://www.mobile01.com/) 4,042 4,596,824 36 
Toyota Dataset (https://www.mobile01.com/) 3,435 2,656,328 40 

Each dataset brings a unique set of characteristics that influence the model’s 
performance. The Contact dataset, with its high temporal resolution, tests the model’s 
ability to handle rapid changes in network structure. Enron, with its irregular 
communication patterns, challenges the model to differentiate between genuine 
disconnections and temporary inactivity. In contrast, the Ford and Toyota datasets require 
the model to understand prolonged interaction patterns, essential for predicting links in 
networks with extended discussions. These varied datasets ensure a comprehensive 
evaluation of the C3D-LSTM model, highlighting its adaptability and robustness across 
different real-world social network scenarios. 
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4.1 Data pre-processing and feature selection 

In our study, we meticulously prepared five real-world datasets – Contact, Enroll, 
Radoslaw, Ford, and Toyota – for link prediction in social networks through 
comprehensive data preprocessing and feature selection. The pre-processing began with 
data cleaning to eliminate duplicates, correct inconsistencies, and handle missing values, 
followed by data transformation to standardise formats across the datasets. We also 
implemented min-max normalisation to address scale disparities among features, and 
conducted feature engineering to create new attributes reflective of the dynamic social 
network interactions. In the feature selection phase, we compare the optimal sequence 
length in the following experiments to ensure that our model was trained on high-quality, 
relevant data, enhancing its predictive accuracy and applicability to diverse real-world 
scenarios. 

To show the performance, we compare the proposed C3D-LSTM with several 
baseline models on well-known evaluation metrics. All implementations are carried out 
with Python and executed on a workstation with Intel i7-9700 3.0 GHz, 32 GB main 
memory, and NVIDIA RTX 2080Ti 11 GB GPUs. 

• LSTM: A special kind of RNN created to handle the gradient disappearance and 
explosion problems that might arise while training lengthy sequences. Longer 
sequences may benefit from LSTM’s performance over ordinary RNN. 

• Gate recurrent unit (GRU): A development of RNN, GRU is quite comparable to 
LSTM. The GRU structure gets rid of cell states and conveys information via hidden 
states. There are just two gate structures, the update gate and the reset gate. 

• Conv2D+LSTM: We also employ 2D-convolutional layers along with LSTMs to 
extract features from input data to aid with sequence prediction. Conv2D-LSTM 
work focuses on applications that generate text descriptions from image sequences 
and visual time series prediction problems. 

Table 2 Confusion matrix 

Actual predict Fake (0) Real (1) 
Fake (0) True positive (TP) False negative (FN) 
Real (1) False positive (FP) True negative (TN) 

Then, three well-known evaluation metrics are adopted to verify the performance. As the 
confusion matrix shown in Table 2, precision is the proportion of positive samples with 
accurate forecasts, whereas recall is the proportion of samples with true facts and those 
with accurate predictions. Based on Table 2, the precision and recall metrics are defined 
as equations (8) and (9), respectively: 

TPPrecision
TP FP

=
+

 (8) 

TPRecall
TP FN

=
+

 (9) 
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For a link prediction method, it may produce scores for unidentified edges mixed with 
test data and edge sets that do not exist. The formula for calculating is described as: 

0.5n nAUC
n

′ ′′+=  (10) 

The meaning of this formula is to choose one edge at random from the test set and an 
empty edge set in that order. Following n separate selections, n denotes the number of 
times the test edge’s score exceeds that of the hypothetical edge, and n is the number of 
times the test edge’s score is equal to the hypothetical edge. AUC for the random edge 
selection approach is obviously 0.5. As a result, whether or not the prediction algorithm’s 
AUC is considerably more than 0.5 determines how accurate the algorithm is. In other 
words, AUC shows how well a link prediction algorithm performs in comparison to a 
random selection method. 

4.2 Performance comparison 

For the experiments, we assess AUC, precision, and recall for five datasets conducted on 
LSTM, GRU, Conv2D + LSTM, and C3D-LSTM, respectively. C3D-LSTM employs the 
kernel size (3 × 2 × 2, 5 × 2 × 2, and 7 × 2 × 2), where the first dimension represents 
depth in terms of the total number of snapshots, and the later dimensions are width and 
height. 

In the presented results, as detailed in Table 3, the area under the curve (AUC) metric 
offers significant insights into the performance of various datasets. Notably, the dataset 
labelled ‘Contact’ boasts the highest AUC. This superior performance is attributed to the 
methodology employed: leveraging the most recent data to predict forthcoming data. An 
interesting observation is the high AUC for ‘Contact’ despite the low proportion of 
encounters. 

On the other hand, the Enroll and Radoslaw datasets represent the company’s email 
data. Their performance is influenced by the structured nature of corporate 
communication, with a set number of working days in a week. This regularity appears to 
be a limiting factor, causing them to underperform in comparison to Contact, 
subsequently leading to a reduced AUC. The Ford and Toyota datasets present another 
intriguing scenario. Despite having a substantial user base, their AUC is compromised. 
The primary reason for this is the sparsity of their datasets. A dense user population does 
not necessarily guarantee a high AUC, especially when the data distribution is sparse. 

Expanding upon the precision and recall metrics, Tables 4 and 5 offer a 
comprehensive comparative analysis across the five real datasets. The variance in 
precision and recall values for Contact in relation to the other datasets is not just evident 
but also noteworthy. This disparity prompts a deeper dive into the underlying factors that 
contribute to such outcomes. Contact stands out, not merely due to its superior 
performance but also because of the inherent stability and consistency of its data. In the 
realm of data analysis, consistency often translates to predictability, which in turn can 
lead to better precision and recall. This is evident when comparing Contact with datasets 
that experience significant data fluctuations. Such datasets, despite their potential 
richness or volume, often grapple with the challenges posed by these fluctuations. 
Variability can introduce uncertainties, making predictions more challenging and thereby 
adversely affecting precision and recall. 
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Table 3 AUC performance on five real datasets 
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Table 4 Precision rate on five real datasets 
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Table 5 Recall rate on five real datasets 
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Furthermore, it is essential to recognise that while a large user base, as seen in Ford and 
Toyota, might intuitively seem advantageous, it does not always correlate with better 
predictive outcomes. The sparsity of their datasets underscores an important lesson: the 
quality and distribution of data often outweigh sheer volume. A densely populated 
dataset, if not well-distributed, can lead to gaps in information, making predictions less 
reliable. In concluding our analysis, the findings significantly enrich the understanding of 
dynamic SNA by demonstrating the crucial role of data characteristics such as 
consistency, distribution, and quality in predictive modelling. The standout performance 
of the Contact dataset exemplifies the impact of stable and consistent data in enhancing 
predictability and accuracy in link prediction, challenging the traditional notion that 
larger datasets automatically yield better results. This is contrasted by the sparsity in Ford 
and Toyota, which highlights that a large user base is less effective if the data are 
unevenly distributed or sparse. Moreover, the structured nature of corporate 
communication datasets like Enroll and Radoslaw suggests that regular interaction 
patterns significantly influence model performance. These insights collectively 
underscore the necessity for tailored predictive modelling in dynamic social networks, 
advocating for approaches that adapt to the unique characteristics of each dataset rather 
than applying a one-size-fits-all model. This nuanced understanding not only advances 
the field of link prediction in social networks, but also provides a valuable framework for 
future research and practical applications, emphasising the importance of data quality and 
nuanced model adaptation in the evolving landscape of dynamic SNA. 

5 Conclusions 

In this paper, we introduce a novel model, C3D-LSTM, for predicting the social 
interaction in dynamic social networks. Particularly, there are two main components of 
C3D-LSTM: 

1 We use a 3D-convolution feature fusion to elucidate hidden relationships and trends 
between consecutive social network snapshots. As a result, we could gather  
short-term spatial and temporal data for network representation. 

2 We employ a LSTM-based model as the fundamental framework to learn the  
long-term temporal network representations of every snapshot of a dynamic network 
since C3D-LSTM can forecast both freshly formed and cancelled connections, unlike 
the majority of previous dynamic link prediction systems, which is more useful in 
real-world applications. 

Extensive testing demonstrates that C3D-LSTM outperforms the most advanced methods 
currently available, and provides outstanding performance. The proposed model better 
comprehends the pattern of network evolution by capturing not only the time dependency 
between a series of snapshots but also the influence of the network structure. Finally, 
using a variety of dynamic network datasets, we ran several tests to compare our  
C3D-LSTM model against deep-learning network link prediction techniques. The 
outcomes confirm that our model performs better than the competition in terms of AUC, 
precision, and recall. In our future work, we aim to enhance the C3D-LSTM model for 
large-scale dynamic networks, focusing on computational optimisation and parallel 
processing. We also plan to expand its application to various network types like 
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biological and transportation networks, and integrate advanced deep learning 
architectures such as transformer models. Additionally, adapting C3D-LSTM to leverage 
real-time streaming data is a key goal, aiming to improve its real-time predictive 
capabilities. These efforts will not only refine C3D-LSTM but also contribute 
significantly to the broader field of network analysis. 
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