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Abstract: Cloud gaming is an emerging service model that basically mimics 
the cloud computing model. Indeed, intensive computing tasks incurred by 
the graphical processing of the fairly complex game scenes are exported to 
remote cloud servers. While this would alleviate the hardware and software 
requirements on the gaming terminals, it poses serious problems of quality 
of service and experience. Furthermore, as the massive multiplayer gaming 
model becomes increasingly popular, computing resources are likely spread 
across multiple data centres and the need for a distributed assignment 
algorithm becomes paramount. In this paper, we are interested in the 
assignment of virtual machines hosted on rendering servers in a distributed 
cloud gaming infrastructure to requests sent by online gamers. We use 
the auction algorithm along with several efficient extensions to solve the 
virtual machine placement problem. We propose a completely distributed 
implementation technique without any shared memory for our algorithm 
called DVMP.
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1 Introduction

Modern computer online games are often graphically intensive. Softwares supporting
these games are becoming more and more complex and they quickly become
incompatible with low performance computers like tablets and smartphones. Therefore,
trying a new game leads to consuming more time, which imposes heavy burdens on
users and requires them to reconfigure or upgrade their computers. In recent years, a
new type of cloud service called ‘cloud gaming’ has emerged and is becoming more and
more popular in the gaming industry. Cloud gaming is a promising solution to reduce
loads on terminals while minimising maintenance costs. Indeed, cloud gaming relies on
the use of cloud computing technologies to build large-scale gaming infrastructures in
order to improve responsiveness and scalability, and overcome the hardware constraints
of the light clients. The benefits of cloud computing that online gaming could take
advantage of include ubiquity, multi-platform to provide immersive gaming space,
reduced power consumption and the presence of multiple cloud services, such as storage
(D’Angelo et al., 2015; Cai et al., 2014; Soliman et al., 2013). Therefore, cloud gaming
might be viewed as a service providing video games on demand to consumers through
the use of cloud technologies.

A cloud gaming system must collect the actions from players, transmit them to
the cloud server, process the action, render the results, code or compress the resulting
changes, and retransmit the scenes as a video sequence from the rendering server
back to the player (Shea et al., 2013). Consequently, for terminals which computing
capacity does not allow them to high quality games, game logics and intensive graphical
processing are executed in the cloud and the scenes are returned as video clips through
the internet ready to be displayed. This requires very tight interaction time limits
between the terminal and the servers. Actually, it has been shown in Jarschel et al.
(2011) through subjective measurements that a delay of 80 ms is a threshold for good
quality perception scores in the case of slow and medium paced games such as sports
and role playing games. However, for fast paced games like first person shooter (FPS),
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this delay threshold does only provide medium quality perception scores because of the
problems of consistency and violation of causal order that long delays could induce,
especially for multiplayer games as studied by Boujelben et al. (2006) and Dammak
et al. (2018).

Choy et al. (2012) conducted a set of network delay measurements to test if the
latency threshold of 80 ms can be achieved on existing commercial cloud computing
infrastructures. They found that if the Amazon EC2 cloud with its three data centres
(DCs) was used to support cloud gaming in the USA, only 70% of the population will
enjoy a good perceived quality as their network delay will be under the 80 ms threshold.
They also found that 10% of the population will be considered unreachable as their
network delay will exceed 160 ms.

In order to address this problem, some potential solutions were suggested. The most
trivial one was to increase the number of DCs. However, in addition to not being
economically viable, this solution could not even completely solve the problem as shown
in Choy et al. (2012) with 20 DCs. The second solution is to support the existing cloud
computing infrastructure with additional resources. Choy et al. (2014) proposed the use
of edge servers such as those deployed by content delivery networks (CDN) in order to
be closer to the gamers, which consequently reduces the latency. In a similar approach,
Lin and Shen (2017) suggested the deployment of an intermediate layer between the
cloud and the gamers called the fog, where supernodes are placed to perform graphical
rendering. The third solution consists in optimising either or both the virtual machine
(VM) placement in the cloud and the routing of requests.

In this paper, we will be interested in the virtual machine placement (VMP)
problem which is considered the cornerstone of several cloud service optimisation and
deployment problems (Laghrissi and Taleb, 2019). The cloud servers are distributed
geographically and when a player attempts to connect to the system and starts playing,
a VMP problem arises. Indeed, several constraints relating to resource availability and
quality of experience must be considered when selecting the optimal VM, which makes
this problem rather complex. The client must choose the closest rendering server in
terms of network delay to improve interactivity and therefore the user experience.
However, this server may already be too busy, or it may not have sufficient resources
to handle games with high graphic requirements, or it may not contain the requested
game since the game provider offers hundreds of games and there is no need to put all
of them on every server. Moreover, if the customer chooses a multiplayer game, one
should consider the location of the other players participating in the game, a process
commonly called matchmaking (Guan et al., 2017).

The objective of our work is to propose a distributed VMP algorithm in the
context of online games in a distributed cloud infrastructure. Indeed, unlike most
previous works which assume the existence of a single central server responsible for
the execution of the VMP algorithm (Chaisiri et al., 2009; Alicherry and Lakshman,
2012; Hao et al., 2017; Saxena et al., 2021), we will consider in this work a network
of servers which run a distributed algorithm. This will solve the problem of scale
inherent to massively multiplayer online games (MMOG). Our proposed solution is
based on the auction algorithm that solves the assignment problem according to a
highly parallelised procedure which will later make it possible to build a decentralised
assignment procedure in order to choose the optimal VM for each request. The major
contributions of our work are as follows:
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• We introduce in the distributed cloud gaming architectures a new decision layer in
between the players and the DCs that hosts the rendering servers. This layer is
formed of an overlay network of access devices, e.g., portal servers,
interconnected with internet links. These devices will run the distributed VMP
algorithm.

• We formulate the VMP problem in this new three layer architecture as a
transshipment problem. Then we transform it first to a transportation problem and
finally to an assignment problem emphasising the game traffic path.

• We design a completely distributed auction-based VMP algorithm along with
multiple extensions from existing literature. Through extensive computations, we
show the effectiveness of our proposition in terms of computation time and
optimality gap.

The rest of this paper is organised as follows. In Section 2, we present some related
works. In Section 3, we describe the VMP problem and propose a relevant formulation.
In Section 4, we briefly describe the native auction algorithm, then we discuss some
extensions to make it more efficient and more adapted to our VM assignment scenario,
and finally we describe our distributed virtual machine placement (DVMP) algorithm.
In Section 5, we present the DVMP performance results and conclude in Section 6.

2 Related works

The VMP problem has been extensively studied in the last decade as can be ascertained
in these surveys by Masdari et al. (2016), Zhang et al. (2016) and Laghrissi and Taleb
(2019), and it continues to generate increasing research interest with the evolution of
cloud architectures and services. Previous works can be divided according to the cloud
architecture. Thus, some works have considered optimisations in a single DC, and others
in distributed cloud infrastructures. Finally, a specific class can also be reserved to the
multiplayer cloud gaming (MCG) infrastructures.

Within a single DC, Meng et al. (2010) approached the VMP problem from two
perspectives. First, they considered minimising the aggregate traffic rates on every
switch given a traffic matrix, and second, they used a clustering technique to solve
the scalability problem. Saxena et al. (2021) considered instead energy consumption
and security as main objectives. Finally, Peake et al. (2022) focused on the algorithmic
aspects of the problem by proposing a parallel solving technique based on the ant colony
optimisation. Overall, algorithmic aspects dominated previous work in this category with
an awareness of the scalability constraint.

Handling the VMP problem in multi-DC architectures considered mainly the
multi-cloud or the distributed cloud models. Chaisiri et al. (2009) proposed an optimal
solution for the VMP problem in a multiple cloud provider environment. They
introduced a central unit called cloud broker which is responsible for solving the
placement problem. In this same brokering context, Kessaci et al. (2013) proposed a
metaheuristic searching method based on the genetic algorithm. Alicherry and Lakshman
(2012) were interested in optimising the network performance in distributed cloud
environments. They proposed a two-phase solution approach based on choosing first
the optimal DC, then optimising the placement inside this DC. They also proposed a
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clustering technique of the resource requests in order to minimise the inter-DC traffic.
Hao et al. (2017) proposed an online methodology to allocate VMs to geographically
distributed cloud locations. Deciding to accept or refuse a request is made separately for
each request without looking at future arrivals. Parida and Pati (2020) used the cloud
brokering policy in a distributed cloud.

Hong et al. (2015) proposed a cloud gaming architecture based on a broker which
is responsible for both VM placement and traffic and workload monitoring. Deng
et al. (2018) considered the VMP problem in the context of MCG. They discussed
typical architectures where rendering servers are placed between the players and the
main game server. A matchmaking process ensures that every player is served by a
rendering server which may serve more than one player. Zhang et al. (2019) extended
the server rendering placement to the context of virtual reality in a distributed mobile
edge cloudlet.

Despite the diversity of cloud architectures considered in previous works, they are
mainly based on a central entity responsible for the VMP problem solving, like the cloud
broker in most proposals. The only work we are aware of which considered a distributed
algorithm for the VMP problem is that of Han et al. (2020) who proposed a distributed
implementation of a VMP algorithm based on game theory. The players determines a
set of beneficial servers and send it to a centralised dispatcher which makes the final
allocation decision. This work is the closest to ours. However, instead of assigning the
main task of executing the distributed algorithm to the client terminals, we will propose
an auction-based completely distributed algorithm implemented on portal nodes which
are owned by the game provider. Our algorithm will not need a centralised entity to
make the final allocation decision.

Auction-based solutions have received particular interest in recent years to solve
resource allocation problems and particularly the VMP problem. The most used auction
variant in the context of cloud computing is the combinatorial auction (CA) where
bidders can place bids on combinations of items, e.g., CPU, memory, storage and
networking resources. Zaman and Grosu (2013) proposed a centralised greedy version
of the CA for a single cloud provider, where a central entity collects bids from the
users then computes the allocation. Samimi et al. (2016) proposed also a centralised
version of the CA based on an auctioneer which runs the resource allocation algorithm.
Li et al. (2018), Tan et al. (2020) and Zhang et al. (2020) were interested in an online
implementation of the auction. As we can see through all these implementations, our
proposal for a distributed implementation of an auction-based VMP solution has not
been addressed in previous work.

3 Problem description and formulation

We will use the basic architecture of a cloud-based online gaming infrastructure as
shown in Figure 1. We assume that a game as a service (GaaS) provider advertises,
through its website, a set of games to its customers located all over the world. We also
assume that a set of portal nodes are deployed in appropriate access zones in order to
bring the service closer to the customers. These nodes are interconnected in an overlay
network and will run de VMP distributed algorithm. When a customer, a player in our
case, wants to use this service, it has to connect first to a portal node in order to choose
the game and to be authenticated through a portal server. A server selection mechanism,
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e.g., based on local DNS server location, should route the customer’s request to the
closest portal node. Second, the portal server has to select an appropriate rendering
server for each request to provide a VM. Rendering servers are responsible for providing
the necessary computing, graphical processing and storage resources for the smooth
running of the game. They are hosted in geographically distributed DCs and connected
to the game server. Finally, once a VM is assigned to a request, the corresponding
player could connect directly to the hosting server on a specific DC to start playing.

Figure 1 Cloud gaming architecture (see online version for colours)

Our approach describes this two-stage selection process as a transshipment problem
where a set of requests (supply) have to be sent to a set of rendering servers (demand)
via a set of intermediate nodes as shown in Figure 2. We assume that at the moment of
matchmaking, there is a set of P players each one of them sends a request rk, k ∈ P ,
identified by CPU and memory requirements to N portal nodes. We also assume that
S rendering servers are available. Each server j is identified by its capacity cj in CPU
and memory resources.

Nevertheless, our problem could have some particularities. Actually, as we can see
in the network diagram of Figure 2, the request paths are different from the traffic paths.
Therefore, if the goal is to optimise the connection establishment process between a
player and a rendering server, including the selection of the best server in terms of
resource availability and the speed of configuring a VM, then we have to solve the
transshipment problem with the requests as the shipped commodities. However, if the
goal is to optimise the quality of experience of the player throughout the game, then
we have to consider some performance metrics on the end-to-end paths between players
and servers.
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Figure 2 Network diagram for the transshipment problem (see online version for colours)

In this work, we will only consider the first case where a set of requests have to be
routed to the rendering servers via the intermediate nodes. Since it is not the request’s
route that will be the most important for the player but rather to be assigned to the best
server that could offer him the best service, we will simplify the problem by assuming
that every subset of players is statically assigned to a particular intermediate node,
based for example on geographical proximity or any other relevant metric. We will also
express the resources in terms of standard units of VMs. That means that a VM will
be assigned for one request and the server capacity cj will be expressed in number of
VMs as well. Therefore, the transshipment problem could be reduced to a transportation
problem between nodes and rendering servers as shown in Figure 3. Each node i will
have a number of requests ni for VM configurations across the S servers.

Let aij be the profit of serving a VM request from node i on server j, and xij be
a variable indicating the number of VM requests from node i assigned to server j. The
VMP problem could be formulated as follows

max
N∑
i=1

S∑
j=1

aijxij (1)
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S∑
j=1

xij ≤ ni ∀i = 1, ..., N (2)

N∑
i=1

xij ≤ cj ∀j = 1, ..., S (3)

xij ≥ 0 and integer ∀(i, j) (4)

The problems (1)–(4) defines an unbalanced transportation problem. Indeed, at
optimality, either set of constraints (2) or (3) will be satisfied as equality. The problem
could be balanced by adding dummy nodes or servers and centrally solved using
well-known algorithms. However, centralised approaches are generally not useful for
real-time decision-making of large-scale problems. We will propose in this work an
approach based on the auction algorithm which offers the opportunity for a decentralised
implementation.

Figure 3 Description of the VM assignment as a transportation problem (see online version
for colours)

4 Distributed virtual machine placement

In this section, we first describe how we could use a distributed version of the auction
algorithm to solve our transportation problem. Then, we present an extension based on
request bundling in order to reduce the problem size.

4.1 The auction algorithm

The auction algorithm is initially proposed to solve the assignment problem where N
persons have to be assigned to N objects on a one-to-one basis so as to maximise a
total profit (Bertsekas, 1992).
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In order to convert problems (1)–(4) into an assignment problem, we duplicate each
node as many times as it has requests, i.e., node i is duplicated ni times. We do the
same thing with the servers that will be duplicated according to their capacities in terms
of VMs. Finally, we will have a problem of assigning P =

∑N
i=1 ni requests to the

C =
∑S

j=1 cj VMs. We assume that the problem is balanced, that is P = C.
Let every VM v in server j, noted in the following vj , has a price pvj ≥ 0, that each

request must pay to have it. We assume that the profit of assigning any request r in
node i, noted in the following ri, to any VM vj will be arivj . Basically, the assignment
profit of any request from node i to any VM in server j will be the same as aij .
However, we can assume that a node may need to add priorities or classes of service to
requests allowing it to offer differentiated services to its customers (players). Therefore,
we define an assignment A as the set of pairs (ri, vj).

The net value of VM vj for any request ri is arivj − pvj . Every request ri would
like to be assigned to a VM vj that provides it with a maximum net value:

arivj − pvj = max
{l=1,...,S}
{u=1,...,cl}

{ariul
− pul

} (5)

An equilibrium assignment is found when the net value for every request ri assigned to
VM vj is within a constant ϵ > 0 of being maximal, that is

arivj − pvj ≥ max
{l=1,...,S}
{u=1,...,cl}

{ariul
− pul

} − ϵ (6)

for all requests ri.
The main iteration of the auction algorithm consists of two phases: the bidding and

the assignment. In the following, we will briefly describe these two phases, more details
could be found in Bertsekas (1992). We assume that an assignment A (may be empty)
exists and we consider a subset R of unassigned requests.

• Bidding phase: For each request ri ∈ R which has not be assigned under A, find
the best VM v∗j such that:

v∗j = arg max
{l=1,...,S}
{u=1,...,cl}

{arivj − pul
} (7)

having the maximum net value:

xri = max
{l=1,...,S}
{u=1,...,cl}

{ariul
− pul

}, (8)

and the best net value offered by a VM other than v∗j :

yri = max
{l=1,...,S}
{u=1,...,cl}

ul ̸=v∗
j

{ariul
− pul

}. (9)

Compute the bid of request ri given by:

briv∗
j
= pv∗

j
+ xri − yri + ϵ. (10)
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• Assignment phase: Each VM vj receives bids from a set of requests P(vj) in the
bidding phase, increases its price to the highest bid:

pvj := max
ri∈P(vj)

brivj , (11)

and gets assigned to the highest bidder r∗i . The request that was initially assigned
to vj becomes unassigned.

Two remarks can be emphasised with regard to the previous description. First, when
R contains all unassigned requests, the auction algorithm is better suited for parallel
computations (Bertsekas, 1992). However, it should be assumed that nodes and servers
are connected by a full mesh in order for nodes to get individual VM prices in a
synchronous way as described in the bidding phase and for VMs to get individual
request bids as described in the assignment phase. Obviously, this is not the case in the
underlying network where connectivity is much less dense. Second, when requests from
the same node bid for VMs in the same server, it is likely that yri in equation (9) will
be equal to xri in equation (8) and therefore the bid in equation (10) will only increase
by ϵ, which will significantly slow down the convergence especially when ϵ is too small
compared to the average price. This problem is known as the price war. In the next
sections, we will propose several extensions in order to cope with these two problems.

4.2 Extensions

4.2.1 Contention threshold

The first problem we are going to deal with is the price war. In our problem, the
similarity can be at the request level as well as at the VM level. Two requests ri and r′i
are similar if arivj = ar′ivj , and two VMs vj and v′j are similar if arivj = ariv′

j
. The set

of requests similar to ri is called the similarity class of ri and the set of VMs similar to
vj is called the similarity class of vj . We will assume that no differentiation is applied
and therefore, all requests from the same node i form a similarity class denoted N (i)
and all VMs in the same server j form a similarity class as well, denoted S(j).

The solution proposed in Bertsekas (1992) is to replace the price pvj of each VM vj
with a contention threshold p̂vj . All VMs in the same server will have the same price

pvj = min
ul∈S(j)

p̂ul
, (12)

but eventually different contention thresholds.
Initially, the contention threshold of each VM vj is equal to its price pvj . When

vj is assigned to a request ri, its contention threshold is increased in such a way
that ri can find an equally attractive VM in a different similarity class, thus avoiding
multiple iterations with small ϵ increments prescribed by the original version. Actually,
equations (7)–(11) are now calculated according to the contention thresholds, instead of
the prices. The other important change is made in equation (9) where the second best
net value is sought in another similarity class.

yri = max
{l=1,...,S}
{u=1,...,cl}
ul /∈S(j∗)

{ariul
− p̂ul

}. (13)
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For the similarity at the request level, we will later propose a method of bundling
that will significantly reduce the size of the problem, and consequently its effect on
convergence.

4.2.2 Limited network connectivity

There have been a lot of discussions about the practical ways to implement the
auction algorithm, especially those related to the synchronisation of processing and data
collection. In Bertsekas and Castanon (1991), we find a comparison of synchronous and
asynchronous implementations of the algorithm on a shared memory machine. However,
as raised in Zavlanos et al. (2008), using a shared memory involves in practice a
full mesh underlying network. A new implementation that considers different levels of
network connectivity is then proposed. We will briefly describe the extension proposed
by Zavlanos et al. (2008) and show how we can use it to solve our problem.

The basic idea of this extension is to let each node make bidding decisions based
on a possibly outdated information and make adjustments as it receives updates from
neighbouring nodes. In fact, it is assumed that the nodes are interconnected via a
network whose connectivity is variable. Thus, the set of VM prices seen by one
node could potentially be different from those seen by another, which makes a major
difference compared to a shared memory approach.

Let the nodes be connected through an overlay network O = (N,V ) where N is the
set of nodes and V is the set of undirected overlay links connecting any pair (i, k) of
nodes. An overlay link might be a path in the underlaying internet network. Two nodes
i and k are neighbours if the overlay link (i, k) exists. Every node i maintains a set
of adjacency Ni = {k ∈ N |(i, k) ∈ V }. Although overlay connectivity depends on the
underlay routing, we will assume that the adjacency sets will remain unchanged.

Basically, every node i should associate and manage a set of bidding variables for
every request ri at any time t. These variables include an assignment vri(t), a specific
view of the contention thresholds p̂rivj (t) and the indexes of the highest bidders brivj (t)
for all VMs vj in all servers j ∈ {1, ..., S}.

We assume that every node i shares bidding information with its directly connected
neighbours on periodic intervals of length T using a specific control protocol. When
node i receives bidding information at period nT , noted in the following n for
simplicity, it updates the bidding information for every request ri as follows (Zavlanos
et al., 2008):

p̂rivj (n+ 1) = max
k∈Ni

{p̂rivj (n), p̂rkvj (n)} (14)

brivj (n+ 1) = max
k∈arg maxz∈Ni

{p̂rivj
(n),p̂rzvj

(n)}
{brkvj (n)}. (15)

Expression (14) is straightforward. If node i learns that queries on neighbouring nodes
have higher contention thresholds for some VM vj , it will update the corresponding
bidding information for its requests. Expression (15) allows every request to simply
keep the largest index bidder for every VM vj in order to break up possible ties.

The assignment of a request ri is updated if p̂rivri
(n)(n) ≤ p̂rivri (n)(n+ 1) and

brivri
(n)(n+ 1) ̸= ri. The new assignment is given by

vri(n+ 1) = arg max
1≤k≤S

{arivk
− p̂rivk(n+ 1)}, (16)
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and the new bidder brivri (n+1)(n+ 1) for VM vri(n+ 1) is now ri. The contention
threshold for VM vri(n+ 1) is increased as follows

p̂rivri
(n+1)(n+ 1) = p̂rivri

(n+1)(n) + γri , (17)

where γri ≥ ϵ is the bid increment which satisfies the ϵ−complementary slackness
condition (6).

4.2.3 Bundling

The last problem we are going to deal with is scalability. Indeed, the processing of the
requests individually could make the size of the problem quite large. This is why, we
propose to group requests and VMs into bundles of size σ and to assign one bundle
of consolidated VMs to one bundle of requests. This technique has been widely used
in the literature. Player grouping is based on social constraints as discussed by Schiller
et al. (2019), and is primarily done through a matchmaking process (Guan et al., 2017).

We note r̄i a bundle of σ requests in node i, and v̄j a bundle of σ VMs on server
j.

Algorithm 1 Distributed virtual machine placement

Given a set of adjacency Ni = {k ∈ N |(i, k) ∈ V }, every node i maintains for every bundle of
requests r̄i at any period of time nT :
• an assignment v̄r̄i (n)
• a specific view of the contention thresholds p̂r̄iv̄j (n)

• the indexes of the highest bidders br̄iv̄j (n) for all bundles of VMs v̄j in all servers j ∈ {1, ..., S}.
1: procedure Bංൽൽංඇ
2: p̂r̄iv̄j (n+ 1) = maxk∈Ni

{p̂r̄iv̄j (n), p̂r̄k v̄j (n)} ◃ update contention thresholds
3: br̄iv̄j (n+ 1) = maxk∈arg maxz∈Ni

{p̂r̄iv̄j (n),p̂r̄z v̄j
(n)}{br̄k v̄j (n)} ◃ update highest bidders

4: end procedure
5: procedure Aඌඌංඇආൾඇඍ
6: if (p̂r̄iv̄ri (n)(n) ≤ p̂r̄iv̄ri (n)(n+ 1) && br̄iv̄r̄i (n)(n+ 1) ̸= r̄i) then
7: v̄r̄i (n+ 1) ∈ argmax1≤k≤S{ar̄iv̄k − p̂r̄iv̄k (n+ 1)} ◃ new assignment
8: br̄iv̄r̄i (n+1)(n+ 1) := r̄i ◃ new bidder for VM v̄r̄i (n+ 1)

9: p̂r̄iv̄r̄i (n+1)(n+ 1) := p̂r̄iv̄r̄i (n+1)(n) + γr̄i ◃ update the contention threshold
10: else
11: v̄r̄i (n+ 1) = v̄r̄i (n)

12: end if
13: end procedure

4.3 DVMP algorithm description

In this section, we will summarise all the above extensions to describe our distributed
auction algorithm for aggregated request assignment (DVMP).

Algorithm 1 describes the main iteration of DVMP. The algorithm stops when the
contention thresholds do not change after a given number of iterations typically equals
to the maximum path length between every pair of nodes.
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5 Performance evaluation

In this section, we will study the performance of DVMP in terms of convergence time
and optimality gap as a function of the problem size and the network topology. The
prices and the contention thresholds are chosen randomly; the results presented in the
following studies are averaged over 100 simulations.

In order to set the size of the bundles, we will take a very simple approach based
either on the typical capacity of the rendering servers or on the size of a group of
players. Considering the typical characteristics of a server with 16 cores and 128 GB
of memory and considering that a gaming VM should have at least 1 core and on
average 8 GB of memory, we can deduce that a server could support 16 gaming VMs
and therefore a bundle could have the size of 16. Schiller et al. (2019) showed that the
players’ group size varies between 0 and 100 members. Thus, we suggest that a bundle
of 15 will be a very reasonable choice.

The problem size depends on the number of nodes and the average number of
requests handled by each node. In Table 1, we provide the total number of duplicated
nodes, which correspond to individual requests, associated with every network size
expressed in number of nodes. As we can see, the size of the assignment problem
without bundling quickly becomes quite large if more than a hundred nodes each
processes only 15 queries on average. However, when requests are aggregated into
bundles of 15, the number of duplicated nodes becomes reasonable again. As in
Zavlanos et al. (2008), we choose three types of topology: line, random and complete.

Table 1 Total number of duplicated nodes for each network size

Number of nodes Total number of duplicated nodes

Without bundling With bundling σ = 15

10 349 22
20 614 40
30 915 59
40 1,201 79
50 1,527 100
60 1,820 119
70 2,144 139
80 2,467 159
90 2,739 179
100 3,058 200

5.1 Convergence time

In Figure 4, it is shown that the convergence time increases exponentially for the three
topologies with the network size. Obviously, the line topology provides the slowest
convergence since it takes N iterations for an update of a node at one end of the network
to reach the other end. The complete topology provides the best performance since it
virtually simulates a shared memory.
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Figure 4 Convergence time of DVMP without bundling (see online version for colours)

Figure 5 Convergence time of DVMP with bundling (σ = 15) (see online version for colours)

When bundling is applied with bundles of 15 requests, the convergence time is
dramatically reduced as shown in Figure 5. The random topology provides a very
interesting reduction for large-sized networks. For example, with a network of 120
nodes, the convergence time is reduced from 380 sec to only 3.8 sec. In Table 2, we
present the convergence time for the complete topology. The assignment problem is
solved with DVMP after a few seconds on a simple PC. Actually, if bundling is applied
on each node, only few bundles of requests could be formed. Therefore, the number of
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duplicated nodes is dramatically reduced and our DVMP algorithm will be closer to a
native auction algorithm. Furthermore, it is also possible to define request classes and
perform request differentiation so that a fixed number of bundles with variable sizes are
formed. In the next section, we will discuss the impact of bundling on the quality of
the solution obtained with DVMP.

Table 2 Comparison between the convergence time without and with bundling for complete
topology

Number of nodes Convergence time

Without bundling With bundling σ = 15

10 0.21 0.035
20 2.69 0.133
30 2.43 0.24
40 7.47 0.32
50 10.23 0.37
60 19.8 1.17
70 36.89 0.9
80 31.07 1.43
90 68.26 1.18
100 124.28 1.56
110 212.53 2.97
120 331.05 3.58
130 424.54 4.84

5.2 Optimality gap

We define the optimality gap as the relative difference between the solution zD found
with DVMP, and the optimal solution z∗ calculated with a linear programming solver.
We used the SCIP optimisation suite (Gamrath et al., 2016) to get the optimal solution.
The optimality gap is computed as follows: Gap = z∗−zD

z∗ .
In Figure 6, we plot the optimality gap as a function of the number of nodes. Overall,

DVMP provides the better solution quality on a complete topology and the gap increases
with the network size. The optimality gap is as low as 2% for a complete network of ten
nodes. Then, the gap reaches 16% for a network of 100 nodes serving 3,058 requests.
Note that on a line network, the performance is also quite good where the gap varies
between 6 and 17%. Even though we are using the finest granularity, our algorithm may
miss the optimal solution because of the ϵ-complementary slackness condition (6). In
our simulations, we used ϵ = 0.01.

When request bundling is used, the performance of DVMP is improved for all
topologies as shown if Figure 7. Actually, the optimality gap for a complete topology is
reduced to only 9% for a network of 100 nodes. For a random topology, the performance
is also very interesting and more stable with an optimality gap varying between 6
and 10% when the network size varies between 10 and 100 nodes. Obviously, the
number of duplicated nodes corresponding to request bundles is dramatically reduced
with bundling.
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Figure 6 Optimality gap of DVMP without bundling (see online version for colours)

Figure 7 Optimality gap of DVMP with bundling (σ = 15) (see online version for colours)

We can conclude that the overall performance in terms of convergence time and
optimality gap for a network with 100 nodes and a random topology is completely
satisfactory. Actually, DVMP could solve this problem with bundling in only 4 s and
incurring a very low optimality gap of 10%.

Our final study aims to investigate the effect of the bundling rate increase on the
overall performance of DVMP. In figure 8, we provide the optimality gap for a bundling
rate σ = 30. We note that the performance of DVMP is degraded using this rather coarse
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granularity. Consequently, we can say that a judicious choice of the bundling rate could
give an acceptable trade-off between the convergence time and the optimality gap. In
the scenarios used in our simulations, σ = 15 provided the best performance.

Figure 8 Optimality gap of DVMP with bundling (σ = 30) (see online version for colours)

6 Conclusions

In this paper, we considered the problem of assigning VMs hosted on rendering servers
in distributed DCs to requests from online gaming players. We introduce an intermediate
overlay network of portal nodes between the player and the rendering servers to solve
the problem. First, we modelled this problem as a transportation problem where nodes
are origins and the servers are destinations. Then, we duplicated the nodes in as many
copies as there are requests and formulated the problem as an assignment between
the duplicated nodes and the VMs. We used a distributed version of the auction
algorithm to solve this finest granularity formulation of our assignment problem. Then,
we used a very simple request differentiation to construct bundles of requests and reduce
the problem size. Finally, we gathered all the pieces of the distributed and bundled
implementations of the bidding and assignment phases to propose our DVMP algorithm.
The performance of DVMP is measured using two metrics, namely the convergence
time and the optimality gap while varying the topology of the overlay network of
nodes. We found that DVMP could solve the assignment problem with bundling in
only 4 s and incurring a very low optimality gap of 10%. In a future work, we are
investigating request differentiation with more complex criteria such as game type,
bandwidth requirements, delay bounds and load balancing.
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