
Int. J. Information and Computer Security, Vol. 20, Nos. 1/2, 2023 1

Searching the space of tower field
implementations of the F28 inverter – with
applications to AES, Camellia and SM4

Zihao Wei, Siwei Sun*, Lei Hu and Man Wei
State Key Laboratory of Information Security,
Institute of Information Engineering,
Chinese Academy of Sciences,
Beijing 100093, China
and
School of Cyber Security,
University of Chinese Academy of Sciences,
Beijing 100049, China
Email: weizihao@iie.ac.cn
Email: sunsiwei@iie.ac.cn
Email: hulei@iie.ac.cn
Email: weiman@iie.ac.cn
*Corresponding author

René Peralta
Computer Security Division,
NIST,
100 Bureau Drive, Stop 8930,
Gaithersburg, MD 20899-8930, USA
Email: rene.peralta@nist.gov

Abstract: The tower field implementation of the F28 inverter is not only
the key technique for compact implementations of the S-boxes of several
internationally standardised block ciphers such as AES, Camellia, and SM4,
but also the underlying structure many side-channel attack resistant AES
implementations rely on. In this work, we conduct an exhaustive study of
the tower field representations of the F28 inverter with normal bases by
applying several state-of-the-art combinatorial logic minimisation techniques.
As a result, we achieve improved implementations of the AES, Camellia
and SM4 S-boxes in terms of area footprint. Surprisingly, we are still able
to improve the currently known most compact implementation of the AES
S-box from CHES 2018 by 5.5 GE, beating the record again. For Camellia
and SM4, the improvements are even more significant. The Verilog codes
of our implementations of the AES, Camellia and SM4 S-boxes are openly
available.

Keywords: tower field; inverter; S-box; AES; Camellia; SM4.

Copyright © 2023 Inderscience Enterprises Ltd.

2 Z. Wei et al.

Reference to this paper should be made as follows: Wei, Z., Sun, S.,
Hu, L., Wei, M. and Peralta, R. (2023) ‘Searching the space of tower field
implementations of the F28 inverter – with applications to AES, Camellia and
SM4’, Int. J. Information and Computer Security, Vol. 20, Nos. 1/2, pp.1–26.

Biographical notes: Zihao Wei received his BS in Computer Science from
the Xidian University, Xian, China, in 2015. Currently, he is working toward
his PhD at the School of Cyber Security, University of Chinese Academy of
Sciences, China. His research interests include efficient and secure hardware
implementation of cryptographic primitives and cryptanalysis of lightweight
cipher.

Siwei Sun is an Associate Professor at the Institute of Information
Engineering, Chinese Academy of Sciences, where his main research
interest includes symmetric-key cryptography, automatic cryptanalysis and
implementation, and cryptanalysis with quantum algorithms. He holds a PhD
in Computer Science from the University of Chinese Academy of Sciences,
Beijing.

Lei Hu received his BS and MS from the Peking University, Beijing, China,
in 1988 and 1991, respectively, and received his PhD from the Chinese
Academy of Sciences in 1994. Since 2002, he has been a Professor at the
Chinese Academy of Sciences. His research interest includes cryptograph and
information security.

Man Wei received her BS in Information and Computing Sciences from the
Nankai University, Tianjin, China, in 2015. She is currently working toward
her PhD at the School of Cyber Security, University of Chinese Academy
of Sciences, China. Her research interests include side channel attack and
protection.

René Peralta is a computer scientist in the Cryptographic Technology
Group at NIST, where he is mainly engaged with the interoperable
randomness beacons, privacy enhancing technologies, circuit complexity, and
post-quantum cryptography projects. He holds a PhD in Computer Science
from the University of California, Berkeley. He has taught at various
universities in the USA, Chile, and Japan.

1 Introduction

For encrypting and authenticating the largest part of the workload of today’s secure
communication, symmetric-key primitives are regarded as the crypto workhorse
(whereas public-key schemes are generally used for setting up the session keys). In
many cases, the components of symmetric-key schemes are built on operations over
finite fields. Since the symmetric-key cryptographic algorithms will eventually be
implemented in software or hardware to play a role in the real world, it is of great
importance to investigate how to implement their common operations efficiently (Beierle
et al., 2016; Boyar et al., 2013; Jean et al., 2017b; Stoffelen, 2016; Li et al., 2019;
Tan and Peyrin, 2020). For instance, due to the rapid development of lightweight IoT

Searching the space of tower field implementations of the F28 inverter 3

devices, ongoing efforts have been made to obtain more compact ASIC implementations
of symmetric-key ciphers (Banik et al., 2016a, 2016b; Jean et al., 2017a). Just recently,
the most compact implementation of the MixColumns and the S-box of AES were
reported at FSE 2018 (Kranz et al., 2017) and CHES 2018 (Reyhani-Masoleh et al.,
2018) respectively.

In this work, we focus on area-optimised implementations of the multiplicative
inverse operation (and its affine equivalences) over F28 . The AES S-box, which is
affine equivalent to the F28 inverter, is the strongest 8× 8 S-box known so far in terms
of local security properties (i.e., nonlinearity, differential uniformity, algebraic degree,
etc.). Several internationally standardised block ciphers, such as Camellia and SM4,
apply variants of the AES S-box in their designs, which are all affine equivalent to the
F28 inverter. Despite its desirable local cryptographic properties, to implement the AES
S-box in ASIC with small footprint is not a trivial task. The naive approach that encodes
the AES S-box as a look-up table in a hardware description language and produces the
actual circuit relying on open-source or commercial CAD tools will certainly lead to
unsatisfactory results for many resource constrained applications. Today’s most compact
ASIC implementations of the AES S-box are based on the tower field architecture,
where the operations over F22k are represented with operations over F2k recursively.

Moreover, several cost-effective threshold implementations of the AES S-box with
resistance against side-channel attacks are built on top of the tower field architecture
(Bilgin et al., 2014, 2015; Cnudde et al., 2016; Moradi et al., 2011). In threshold
implementations, the most important design consideration includes the security level,
number of fresh random bits required, and area consumption. Therefore, providing
different implementations of the tower field structure without increasing the circuit
footprint potentially offers more flexible area-randomness-security trade-off in threshold
implementations.

Apart from these, breaking the AES S-box into several layers with the tower field
architecture allows registers to be inserted into the middle of the computation such that
the critical path can be reduced, and therefore the frequency of the system clock can be
increased to boost the performance.

1.1 Related work

The tower field architecture was first proposed by Itoh and Tsujii for computing
multiplicative inverse in finite fields of characteristic two (Itoh and Tsujii, 1988). At
the beginning, it was applied in developing efficient implementations of public-key
cryptographic algorithms involving inverse operations over F2n (Guajardo and Paar,
1997; Paar and Soria-Rodriguez, 1997). Later, after the development of the advanced
encryption standard (AES) – a block cipher using an S-box affine equivalent to the
F28 multiplicative inverter (Daemen and Rijmen, 2002), the tower field architecture
found applications in compact hardware implementations of AES (Mentens et al., 2005;
Rudra et al., 2001; Satoh et al., 2001; Wolkerstorfer et al., 2002). After a series of
improvements, Canright (2005a, 2005b), Boyar et al. (2013) and Circuit Minimization
Team (CMT) (http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html) achieved
the most compact implementations at the time, which has become the de facto standard
for compact implementations of the AES S-box. Such tower field implementations of
the AES S-box were also intensively applied in side-channel resistant implementations
of AES to reduce resource consumption. Recently Reyhani-Masoleh et al. (2018) broke

4 Z. Wei et al.

the record set by Canright and Boyar et al., presenting so far the most compact ASIC
implementation of the AES S-box, which costs 182.25 GE under the STM 65 nm CMOS
technology.

Due to the strong local cryptographic properties of the AES S-box, several well
known block ciphers employ affine equivalences of the AES S-box as their S-boxes,
including Camellia and SM4. Therefore, the technique of tower field implementation
naturally applies to these ciphers (Abbasi and Afzal, 2011; Bai et al., 2009;
Mart́ınez-Herrera et al., 2012, 2013; Satoh and Morioka, 2003).

Table 1 Previous tower field implementations of the AES, Camellia and SM4 S-boxes, where
P means a polynomial basis is used, N means a normal basis is used, and #Cases
denotes the number of cases considered

Cipher Source Tower field architecture and basis #Cases

AES Rudra et al. (2001)
and Wolkerstorfer

et al. (2002)

F2
w4+w+1−−−−−−→ F24

y2+y+C1−−−−−−→
P

F28 1

Satoh et al. (2001) F2
w2+w+1−−−−−−→

P
F22

z2+z+C2−−−−−−→
P

F24
y2+y+C3−−−−−−→

P
F28 1

Mentens et al.
(2005)

F2
w2+w+1−−−−−−→

P
F22

z2+z+C2−−−−−−→
P

F24
y2+y+ν−−−−−→

P
F28 64

Canright (2005b) F2
w2+w+1−−−−−−→

P/N
F22

z2+z+N−−−−−−→
P/N

F24
y2+y+ν−−−−−→
P/N

F28 432

Boyar et al. (2013) F2
w2+w+1−−−−−−→

N
F22

z2+z+C4−−−−−−→
N

F24
y2+y+C5−−−−−−→

N
F28 1

Reyhani-Masoleh
et al. (2018)

F2
w4+w3+w2+w+1−−−−−−−−−−−−→

N
F24

y2+y+ν−−−−−→
N

F28 32

Camellia Satoh and Morioka
(2003)

F2
w4+w+1−−−−−−→ F24

y2+y+C6−−−−−−→
P

F28 1

Mart́ınez-Herrera
et al. (2012)

F2
w4+w+1−−−−−−→

P/N
F24

y2+τy+ν−−−−−−→
P/N

F28 13

F2
w2+w+1−−−−−−→

P/N
F22

z2+Tz+N−−−−−−−→
P/N

F24
y2+τy+ν−−−−−−→

P/N
F28

SM4 Mart́ınez-Herrera
et al. (2013)

F2
w4+w+1−−−−−−→

P/N
F24

y2+C7y+C8−−−−−−−−→
P/N

F28 4

Bai et al. (2009) F2
w2+w+1−−−−−−→

P
F22

z2+z+C9−−−−−−→
P

F24
y2+y+C10−−−−−−−→

P
F28 1

Abbasi and Afzal
(2011)

F2
w2+w+1−−−−−−→

N
F22

z2+z+N−−−−−−→
N

F24
y2+y+ν−−−−−→

N
F28 16

In tower field implementations, a sequence of field extensions starting from F2 and
ending at F28 of the type F2k ⊆ F(2k)2l is considered. At each level of the field
extension, an irreducible polynomial over F2k and a corresponding basis of F

(2k)2l

over F2k have to be specified. The irreducible polynomials and bases induce a basis
of F28 over F2. The tower field architecture is implemented over this new basis with

Searching the space of tower field implementations of the F28 inverter 5

proper basis transformations to maintain the original field representation. Therefore, the
choices of the field extensions, the corresponding irreducible polynomials and the bases
determine the overall cost of the implementation. A summary of the choices of existing
work is given in Table 1 for AES, Camellia and SM4 respectively.

1.2 Contributions

As shown in Table 1, only a part of the design space of tower field implementation
was explored by choosing irreducible polynomials of special forms in previous
work. In particular, previous work preferred a class of parameter choices where the
irreducible polynomials selected for the field extension F22 ⊆ F24 ⊆ F28 are of the
form z2 + z +N and y2 + y + ν, and indeed the most well known implementations
of Canright’s and Boyar et al.’s schemes are in this class (Boyar et al., 2013;
Canright, 2005b). The preference for this special class is reasonable, since with these
choices of parameters, the implementations of some subcomponents of the circuit are
free. Despite this heuristic, there is no concrete evidence that this configuration will
result in optimal implementations. Therefore, we exhaustively examine all possible
tower field representations under normal bases induced by irreducible polynomials
(720 cases in total), and find several cases which were never considered previously
enjoy the most compact implementations. Along the way, we do not only apply
well-known logic minimisation techniques from Canright and Boyar et al., but also
resort to several state-of-the-art combinatorial logic minimisation techniques (Fuhs and
Schneider-Kamp, 2010; Jean et al., 2017b; Stoffelen, 2016) developed in recent years.
As a result, we beat the new record set by the work of Reyhani-Masoleh et al.
(2018) for compact implementations of the AES S-box. Moreover, the implementations
of the Camellia and SM4 S-boxes are improved significantly, and we refer reader
to Table 2 for a summary of the results. Naturally, these results serve to achieve
more compact implementations of AES, Camellia and SM4, and potentially provide
more flexible security-randomness-area trade-offs for threshold implementations of these
block ciphers. The Verilog codes of our implementation of the AES, Camellia and SM4
S-boxes are provided in Appendix.

1.3 Organisation

In Section 2, we give a brief introduction of the mathematical background of the tower
field representations under different bases, as well as the frequently-used logic gates
for constructing digital circuits. Subsequently, we describe the details of the tower field
implementation of the F28 inverter in Section 3. In Section 4, we apply state-of-the-art
logic minimisation techniques to a list of tower field representations of the AES,
Camellia and SM4 S-box under all possible normal bases. As a result, we obtain so far
the most compact implementations of these S-boxes. We conclude the paper in Section 5
and propose possible future work. The source codes of the optimised implementations
for the S-boxes of AES, Camellia and SM4 are provided in Appendix.

6 Z. Wei et al.

Table 2 Synthesised results, where the functionalities of some uncommon gates (e.g., XOR3,
OAI21, AOI21, etc.) are described in Section 2

C
ip
he
r

So
ur
ce

G
at
es

us
ed

Sy
nt
he
si
s
re
su
lts

XO
R/

XN
OR

XO
R3

NA
ND

AN
D

NA
ND

3
NO

R
NO

T
OA

I2
1

AO
I2

1
OA

I3
2

SM
IC

13
0

nm
SM

IC
65

nm
ST

M
65

nm
Na

ng
at

e
45

nm

A
ES

Ru
dr
a
et

al
.
(2
00
1)

11
1

58
33
6.
33

33
6.
75

29
4.
50

29
9.
33

Sa
to
h
et

al
.
(2
00
1)

10
0

36
28
1.
33

27
9.
00

24
5.
00

24
8.
00

M
en
te
ns

et
al
.
(2
00
5)

96
36

27
2.
00

27
0.
00

23
7.
00

24
0.
00

Ca
nr
ig
ht

(2
00
5b
)

80
34

6
22
6.
67

22
0.
00

20
0.
00

20
0.
00

Bo
ya
r
et

al
.
(2
01
3)

83
32

23
6.
33

23
4.
75

20
6.
00

20
8.
67

Ci
rc
ui
t
M
in
im
iz
at
io
n
Te
am

(C
M
T)

81
32

23
1.
67

23
0.
25

20
2.
00

20
4.
67

81
32

22
1.
00

21
4.
25

19
4.
00

19
4.
00

Re
yh
an
i-M

as
ol
eh

et
al
.
(2
01
8)

69
39

4
3

4
21
1.
00

20
5.
25

18
8.
00

18
8.
00

69
31

3
5

7
1

N/
A

N/
A

N/
A

18
6.
00

63
3

27
7

4
4

N/
A

N/
A

18
2.
25

N/
A

O
ur
s

69
33

8
20

2.
00

19
6.
25

17
9.
00

17
9.
00

51
9

33
8

N/
A

N/
A

17
6.
75

N/
A

Ca
m
el
lia

M
ar
t́ın

ez
-H
er
re
ra

et
al
.
(2
01
2)

11
3

35
9

31
6.
33

31
3.
50

27
6.
50

27
8.
67

O
ur
s

68
33

8
1

20
0.
33

19
4.
75

17
7.
75

17
7.
67

SM
4

M
ar
t́ın

ez
-H
er
re
ra

et
al
.
(2
01
3)

99
58

11
31
5.
67

31
8.
00

27
8.
75

28
2.
67

Ba
i
et

al
.
(2
00
9)

15
7

63
45
0.
33

44
7.
75

39
2.
75

39
8.
00

A
bb
as
i
an
d
A
fz
al

(2
01
1)

13
4

36
36
0.
67

35
5.
50

31
3.
00

31
6.
00

O
ur
s

66
32

9
1

19
5.
67

19
0.
25

17
3.
75

17
3.
67

Searching the space of tower field implementations of the F28 inverter 7

2 Preliminaries

We first give a brief introduction of the tower field representation. Then we list a
set of gates together with their functionalities and areas. These gates will be used to
implement the circuits constructed in this paper, and the overall area of each circuit will
be computed accordingly.

2.1 Tower field representation

Let F2 = {0, 1} be the finite field of two elements. It is well known that the field
F2k with 2k elements can be induced by an irreducible polynomial q(x) ∈ F2[x] with
degree k, i.e., F2k

∼= F2[x]/(q(x)). Assuming that X is a root of q(x) over F2k , then
every element in F2k can be represented as an F2-linear combination bk−1X

k−1 +
· · ·+ b1X + b0 of [Xk−1, · · · , X,X0], which is a polynomial basis of F2k over F2. To
be concrete, we take k = 8, and we call (b7, · · · , b0) the bit-vector representation of
bk−1X

k−1 + · · ·+ b1X + b0 under the basis [X7, · · · , X,X0].

Figure 1 The tower field structure

F2 F22 F24 F28
t(w) = w2 + w + 1

[W 2,W]

s(z) = z2 + Tz + N

[Z4, Z]

r(y) = y2 + τy + ν

[Y 16, Y]

q(x) ∈ F2[x]

[X7, X6, X5, X4, X3, X2, X, 1]

Considering a sequence of field extensions F2 ⊆ F22 ⊆ F24 ⊆ F28 shown in Figure 1.
Let r(y) ∈ F24 [y], s(z) ∈ F22 [z] and t(w) ∈ F2[w] be irreducible polynomials over their
respective fields, and let Y ∈ F28 , Z ∈ F24 and W ∈ F22 be roots of r(y), s(z) and
t(w) over the corresponding fields respectively. Then we obtain a set of normal basis:
[Y 16, Y] is a basis of F28 over F24 , [Z4, Z] is a basis of F24 over F22 , and [W 2,W]
is a basis of F22 over F2. Therefore, for an element b = b7X

7 + · · ·+ b1X + b0 ∈ F28

we have

b = γ1Y
16 + γ0Y, γ1, γ0 ∈ F24 ,

γ1 = Γ3Z
4 + Γ2Z,

γ0 = Γ1Z
4 + Γ0Z,Γ3,Γ2,Γ1,Γ0 ∈ F22 ,

Γ3 = g7W
2 + g6W,

Γ2 = g5W
2 + g4W,

Γ1 = g3W
2 + g2W,

Γ0 = g1W
2 + g0W, gi ∈ F2, 0 ≤ i ≤ 7,

which implies

b = b7X
7 + · · ·+ b1X + b0

= g7W
2Z4Y 16 + g6WZ4Y 16 + g5W

2ZY 16 + g4WZY 16

+g3W
2Z4Y + g2WZ4Y + g1W

2ZY + g0WZY.

8 Z. Wei et al.

That is, b can be represented as (g7, · · · , g0) under the tower basis

T B =
[
W 2Z4Y 16,WZ4Y 16,W 2ZY 16,WZY 16,W 2Z4Y,

WZ4Y,W 2ZY,WZY
]

induced by W , Z and Y . We call (g7, · · · , g0) the bit-vector representation of b under
the tower basis. Assuming that the tower basis T B can be represented by the original
polynomial basis with a matrix Mt ∈ F8×8

2 as

T B = (X7, · · · , X0)Mt,

we have

(b7, · · · , b0)T = Mt · (g7, · · · , g0)T or (g7, · · · , g0)T = M−1
t · (b7, · · · , b0)T.

Therefore, we can change the representations by multiplying Mt or M−1
t , and we call

Mt the basis transformation matrix.
Considering the example from AES shown in Figure 1, where q(x) is the Rijndael

polynomial

q(x) = x8 + x4 + x3 + x+ 1,

τ = X7 +X5 +X4 +X3 +X2 + 1,

ν = X7 +X6 +X5,

T = X7 +X5 +X4 +X3 +X2 + 1,

N = 1,

W = X7 +X5 +X4 +X3 +X2,

Z = X6 +X4,

Y = X6 +X3.

Then we have T B = (X7, · · · , X0) ·Mt, where

Mt =



1 1 1 0 0 0 0 0
1 0 0 1 0 1 1 0
1 0 1 1 0 1 0 1
0 1 0 0 0 1 0 1
0 0 0 0 0 1 0 0
1 0 1 1 1 1 1 1
0 1 1 1 0 1 1 1
1 0 1 1 1 1 0 1


.

2.2 Frequently-used gates

The circuits of this paper are eventually synthesised with the gates provided in
common cell libraries. We list a set of frequently-used gates in Table 3, where the
area is measured in gate equivalence (GE), corresponding to the area of a two-input
drive-strength-one NAND gate.

Searching the space of tower field implementations of the F28 inverter 9

Note that apart from those common gates (XOR, XNOR, AND, NAND, OR, NOR, NOT)
which are available in almost all CMOS technology libraries, we also list some
compound gates (XOR3, NAND3, OAI21, AOI21, OAI32).

The data of STM 65 nm library is collected from Reyhani-Masoleh et al.’s (2018)
paper, while the others comes from library files and databooks. The cell in blank of
STM 65 nm means the corresponding gate does not appear at Reyhani-Masoleh et al.
(2018), and the cell labelled as N/A means the library does not support this kind of gate.

Table 3 Frequently-used gates in common CMOS technology libraries

Gate
Area (GE)

SMIC
130 nm

SMIC
65 nm

STM
65 nm

Nangate
45 nm

XOR: (a, b) 7→ a⊕ b 2.33 2.25 2 2
XNOR: (a, b) 7→ a⊙ b 2.33 2.25 2 2
XOR3: (a, b, c) 7→ a⊕ b⊕ c 5.67 4.75 3.75 N/A
AND: (a, b) 7→ a · b 1.33 1.5 1.25 1.33
NAND: (a, b) 7→ a · b 1 1 1 1
NAND3: (a, b, c) 7→ a · b · c 1.33 1.25 1.25 1.33
OR: (a, b) 7→ a | b 1.33 1.5 1.25 1.33
NOR: (a, b) 7→ a | b 1 1 1 1
NOT: a 7→ a 0.66 0.75 0.75 0.66
OAI21: (a, b, c) 7→ (a | b) · c 1.67 1.5 1.33
AOI21: (a, b, c) 7→ (a · b) | c 1.67 1.5 1.33
OAI32: (a, b, c, d, e) 7→ (a | b | c) · (d | e) 2.33 N/A 2 N/A

3 Tower field implementation of the F28 inverter

In this section, we give an introduction to the tower field implementation of the F28

inverter. Please note that the derivation of these results can all be found in Canright’s
paper (Canright, 2005a, 2005b).

Consider the field extension F24 ⊆ F28 with an irreducible polynomial r(y) = y2 +
τy + ν ∈ F24 [y]. Let Y ∈ F28 be a root of r(y). Then Y 16 and Y form a normal basis,
and every element g ∈ F28 can be represented as g = γ1Y

16 + γ0Y , where γ1, γ0 ∈
F24 . Let g−1 = δ1Y

16 + δ0Y with δ1, δ0 ∈ F24 be the inverse of g. By solving the
equation

g · g−1 = (γ1Y
16 + γ0Y)(δ1Y

16 + δ0Y) = 1

for δ1 and δ0, we obtain

δ1 = [γ1γ0τ
2 + (γ1 + γ0)

2ν]−1γ0

δ0 = [γ1γ0τ
2 + (γ1 + γ0)

2ν]−1γ1.

10 Z. Wei et al.

Therefore, given r(y) and the basis [Y 16, Y], we can compute g−1 = (δ1, δ0) from g =
(γ1, γ0) using operations over F24 , which is illustrated in Figure 2, where ϕ = γ1γ0τ

2 +
(γ1 + γ0)

2ν and λ = ϕ−1.

Figure 2 The F28 inverter

F
24

square-

ν-scaler

F
24

multiplier

constant

τ
2

multiplier

g
8

γ1

γ0

4

4

F
24

inverter

φ

F
24

multiplier

F
24

multiplier

λ

δ1

δ0

4

4

g
−1

8

3.1 Multiplication and inverse over F24

Extend F22 to F24 with an irreducible polynomial s(z) = z2 + Tz +N ∈ F22 [z], and
let Z ∈ F24 be a root of s(z). Then every element in F24 can be represented as an
F22 -linear combination of the normal basis [Z4, Z]. Let γ = Γ1Z

4 + Γ0Z, and λ =
Λ1Z

4 + Λ0Z, where Γi, Λj ∈ F22 . Then the multiplication of γ and λ can be calculated
as

γλ = (Γ1Z
4 + Γ0Z)(Λ1Z

4 + Λ0Z)

= [Γ1Λ1T + (Γ1 + Γ0)(Λ1 + Λ0)NT 2]Z4

+[Γ0Λ0T + (Γ1 + Γ0)(Λ1 + Λ0)NT 2]Z,

(1)

which is illustrated in Figure 3.

Figure 3 The F24 multiplier

γ

λ

4

Γ1

Γ0

2

2

4

Λ1

Λ0

2

2

F22

multiplier

F22

multiplier

F22

multiplier

constant
T

multiplier

constant
NT2

multiplier

constant
T

multiplier

2

2

γλ
4

Let ϕ = Φ1Z
4 +Φ0Z with Φi ∈ F22 . It can be shown that the inverse ϕ−1 of ϕ is

[Φ1Φ0T
2 + (Φ1 +Φ0)

2N]−1Φ0Z
4 + [Φ1Φ0T

2 + (Φ1 +Φ0)
2N]−1Φ1Z, (2)

whose circuit is depicted in Figure 4.

Searching the space of tower field implementations of the F28 inverter 11

Figure 4 The F24 inverter

F22 square-

N-scaler

F22

multiplier

constant
T2

multiplier

φ
4

Φ1

Φ0

2

2

F22

inverter

F22

multiplier

F22

multiplier

2

2

φ−14

3.2 Multiplication and inverse over F22 .

Consider the field extension F2 ⊆ F22 with irreducible polynomial t(w) = w2 + w +
1 ∈ F2[w] (the only irreducible polynomial in F2[w]). Let W be a root of t(w) over
F22 . Then every element Γ ∈ F22 can be represented as an F2-linear combination Γ =
u1W

2 + u0W of the normal basis [W 2,W], with ui ∈ F2. Let ∆ = v1W
2 + v0W with

vj ∈ F2 be another element in F22 . The multiplication is given by

Γ∆ = (u1W
2 + u0W)(v1W

2 + v0W)

= [u1 · v1 ⊕ (u1 ⊕ u0) · (v1 ⊕ v0)]W
2

+ [u0 · v0 ⊕ (u1 ⊕ u0) · (v1 ⊕ v0)]W,

(3)

whose implementation is shown in Figure 5. In addition, if Γ∆ = 1, it can be shown
that v1 = u0 and v0 = u1. That is, the F22 inverter can be implemented by swapping
the two 1-bit input signals, which is free.

Figure 5 The F22 multiplier

Γ

∆

2

u1

u0

1

1

2

v1

v0

1

1

1

1

Γ∆
2

Remark: Finally, we would like to mention two other formulas which are useful later:

Γ∆ ·W = (u1 · v1 ⊕ u0 · v0)W 2 + [u1 · v1 ⊕ (u1 ⊕ u0) · (v1 ⊕ v0)]W

Γ∆ ·W 2 = [u0 · v0 ⊕ (u1 ⊕ u0) · (v1 ⊕ v0)]W
2 + (u1 · v1 ⊕ u0 · v0)W.

(4)

12 Z. Wei et al.

According to equation (4), the implementation cost of a multiplication followed with a
W (or W 2) scaler is the same as that of the multiplication Γ∆, which requires four XOR
gates and three AND gates.

4 Applications to the S-boxes of AES, Camellia, and SM4

The S-boxes of AES, Camellia, and SM4 are all affine equivalent to the F28 inverter,
which can be unified into the following form

S(b) = M2 · IqPB(M1 · b⊕ C1)⊕ C2, b ∈ F28 ,

where M1, M2 are 8× 8 matrices over F2, C1, C2 are constant column vectors in F8
2,

and IqPB : F8
2 → F8

2 is a function that maps the bit-vector representation of an element
in F28 to the representation of its inverse in F28 under a polynomial basis of F28 over
F2 induced by an irreducible polynomial q(x) ∈ F2[x]. We refer reader to Table 4 for
the concrete values of these parameters for AES, Camellia and SM4.

However, it is difficult to implement the function IqPB directly with small circuit
footprint. Therefore, we first implement the function IT B : F8

2 → F8
2 which maps the

representation of an element in F28 to the representation of its inverse element under
the tower basis T B. According to the discussion of Section 2, we have

IqPB(b) = Mt · IT B(M
−1
t · b).

Therefore, S(b) can be implemented in practice as

S(b) = M2Mt · IT B(M
−1
t M1 · b⊕M−1

t C1)⊕ C2, b ∈ F8
2. (5)

Our goal is to identify a proper tower basis such that the overall circuit footprint
of the implementation of S(b) is minimised. Recalling the tower field architecture
shown in Figure 1, the tower basis is completely determined by the three irreducible
polynomials r(y) = y2 + τy + ν ∈ F24 [y], s(z) = z2 + Tz +N ∈ F22 [z], t(w) = w2 +
w + 1 ∈ F2[w], and their roots Y , Z and W . Therefore, the 215 possible choices of τ ,
ν, T , N , Y , Z, and W form the overall design space1, in which there are only 720 valid
cases (we discard equivalent classes and non-irreducible polynomials).

Concretely, there are six possibilities for (T,N) making s(z) irreducible, and they
are {(1,W), (1,W 2), (W, 1), (W,W), (W 2, 1), (W 2,W 2)}. For each possible choice of
(T,N), 120 cases of (τ, ν) can be identified such that r(y) is irreducible. We can choose
either one of the two roots for W , Z and Y because the other roots are exactly W 2, Z4

and Y 16. So altogether there are 6× 120× 1× 1× 1 = 720 valid cases. We exhaust all
these cases for AES, Camellia and SM4 and list the optimal parameter choices in terms
of compactness in Table 5.

According to Table 5, for the parameters of AES, we have the following relationship:

T = W,N = 1, τ = T · Z4 + T · Z, ν = 0 · Z4 + T 2 · Z. (6)

Similarly, for Camellia, we have T = W,N = 1, τ = T 2 · Z4 + T 2 · Z, ν = T · Z4 +
0 · Z, and for SM4, we have T = W,N = 1, τ = T 2 · Z4 + 1 · Z, ν = T · Z4 + T 2 · Z.
In what follows, we focus on the optimisation of the AES S-box with the optimal
parameter we identified as an example. For Camellia, SM4 and other parameters, the
same procedure is performed.

Searching the space of tower field implementations of the F28 inverter 13

Table 4 The parameters of the S-boxes of AES, Camellia, and SM4, where a hexadecimal
number represents an irreducible polynomial in F2[x] (e.g., x8 + x4 + x3 + x+ 1 is
represented by 0x11B)

Cipher M1 C1 M2 C2 q(x)

AES



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





0

0

0

0

0

0

0

0





1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1





0

1

1

0

0

0

1

1


0x11B

Camellia∗



0 0 1 0 1 0 0 1

1 0 1 0 1 0 0 0

0 0 0 0 0 0 1 1

0 1 1 0 0 0 0 1

1 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1

0 0 1 1 1 1 1 1

0 0 0 0 0 1 1 0





1

1

1

0

1

1

0

1





0 0 0 1 1 1 0 0

0 1 1 1 0 0 0 0

0 1 1 1 0 1 1 0

1 0 0 0 1 1 0 1

0 1 0 0 0 0 0 0

0 0 1 0 0 1 0 1

0 0 1 0 0 1 0 0

0 0 0 1 0 0 0 0





0

1

1

0

1

1

1

0


0x169

SM4



1 1 0 1 0 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 0 1 0 0

0 1 1 1 1 0 1 0

0 0 1 1 1 1 0 1

1 0 0 1 1 1 1 0

0 1 0 0 1 1 1 1

1 0 1 0 0 1 1 1





1

1

0

1

0

0

1

1





1 1 0 1 0 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 0 1 0 0

0 1 1 1 1 0 1 0

0 0 1 1 1 1 0 1

1 0 0 1 1 1 1 0

0 1 0 0 1 1 1 1

1 0 1 0 0 1 1 1





1

1

0

1

0

0

1

1


0x1F5

Notes: *the description of the Camellia S-box in the original specification
(Aoki et al., 2000) is different from ours. Reader could check the
substitution table to confirm the equivalence.

Table 5 Optimal choices of parameters for AES, Camellia and SM4 in terms of compactness

Cipher W T N Z τ ν Y

AES 0xBC 0xBC 0x01 0xB0 0xBD 0x5C 0xF4
Camellia 0x7E 0x7E 0x01 0x15 0x01 0x06 0x02
SM4 0x5C 0x5C 0x01 0x7A 0x77 0x27 0x66

Note: The parameters are given with their polynomial basis representations (e.g.,
X7 +X5 +X4 +X3 +X2 is represented by 0xBC).

4.1 Optimised implementation of the F24 multiplier, τ2 multiplier, and the
square-ν-scaler as a whole

Before giving the optimised implementation, we unfold the circuits of the F24 multiplier,
τ2 multiplier, and square-ν-scaler one by one without any optimisation. Based on

14 Z. Wei et al.

these unfolded circuits, we reduce their areas by applying several logic minimisation
techniques with necessary tweaks.

F24 multiplier: by plugging Figure 5 into Figure 3, we obtain the gate-level circuit
of the F24 multiplier shown in Figure 6, which can also be derived by substituting
equations (3) and (4) into equation (1).

Figure 6 F24 multiplier
1

1

1

1

1

1

1

1

γ1

γ0

4

4

1

1

1

1

γ1γ0
4

τ2 multiplier: according to Table 5 and equation (6), we have τ = TZ4 + TZ =
WZ4 +WZ and τ2 = Z4 + Z. Let α = (a3W

2 + a2W)Z4 + (a1W
2 + a0W)Z be an

arbitrary element in F24 . We have

ατ2 = [(a3 ⊕ a2)W
2 + a3W]Z4 + [(a1 ⊕ a0)W

2 + a1W]Z,

leading to the gate-level circuit of the τ2 multiplier shown in Figure 7.

Figure 7 τ2 multiplier

a3

a2

a1

a0

1

1

1

1

1

1

1

1

α
4

ατ 2
4

F24 square-ν-scaler: according to Table 5 and equation (6), ν = W 2Z. Let α =
(a3W

2 + a2W)Z4 + (a1W
2 + a0W)Z be an arbitrary element in F24 . Then α2ν can

be computed as α2ν = [(a3 + a1)W
2 + (a3 + a2 + a1 + a0)W]Z4 + [(a1 + a0)W

2 +
a0W]Z, whose gate-level circuit is shown in Figure 8.

Searching the space of tower field implementations of the F28 inverter 15

Figure 8 F24 square-ν-scaler

a3

a2

a1

a0

1

1

1

1

α
4

1

1

1

1

α2ν
4

Figure 9 A part of the F28 inverter (unoptimised)

1

1

1

1

1

1

1

1

γ1

γ0

4

4

F24 multiplier τ2 multiplier

1

1

1

1

1

1

1

1

F24 square-ν-scaler

1

1

1

1

Now, we can assemble the F24 multiplier, τ2 multiplier, and square-ν-scaler to obtain a
part of the F28 inverter according to Figure 2, which gives the circuit shown in Figure 9.
According to equation (4), this circuit can be partially optimised with some tweaks on
the eight XOR gates appearing at the lower part of Figure 9, leading to the circuit shown
in Figure 10. Subsequently, by applying the formula

a · b⊕ a⊕ b = a | b (7)

16 Z. Wei et al.

Figure 10 A part of the F28 inverter (partially optimised)

1

1

1

1

1

1

1

1

γ1

γ0

4

4

1

2

3

4

γ1γ0τ
2

1

2

3

4

(γ1 + γ0)
2ν

1

2

3

4

1

1

1

1

Figure 11 A part of the F28 inverter (optimised)
1

1

1

1

1

1

1

1

γ1

γ0

4

4

1

1

2

2

3

4

4

1

2

1

1

1

1

Searching the space of tower field implementations of the F28 inverter 17

We can transform the circuit shown in Figure 10 into the circuit presented in Figure 11.
According to equation (7), at best, we can replace two XOR gates and one AND gate by a
single OR gate. This happens for the gates marked by number 3. However, when some
intermediate value of the computation a · b⊕ a⊕ b is required, we still need to keep
some intermediate gates. For example, we can only replace two XOR gates with one OR
gate and keep the AND gate intact. Similarly, for the gates marked with number 1 and
number 2, we can only replace one XOR gates with one OR gate. Finally, by applying the
formulas a · b⊕ c · d = a · b⊕ c · d and a · b⊕ c | d = a · b⊕ c | d, the AND gates and
OR gates can be substituted by NAND gates and NOR gates respectively.

4.2 Optimised implementation of the F24 inverter

Based on the selected parameters for AES (T = W and N = 1) given in Table 5 and
equation (6), equation (2) can be simplified as

ϕ−1 = [Φ1Φ0W
2 + (Φ1 +Φ0)

2]−1Φ0Z
4 + [Φ1Φ0W

2 + (Φ1 +Φ0)
2]−1Φ1Z. (8)

Deviating from previous implementations (Boyar et al., 2013; Canright, 2005a, 2005b),
we regard the F24 inverter as a 4× 4 S-box whose permutation table is determined by
equation (8):

[0x0, 0x8, 0x4, 0xC, 0x2, 0xF, 0x7, 0x6, 0x1, 0xD, 0xA, 0xE, 0x3, 0x9, 0xB, 0x5].

To obtain optimised implementations of this S-box, we consider two recently proposed
techniques. First, we employ Stoffelen’s SAT-based technique (Stoffelen, 2016) to
produce a circuit of the 4× 4 S-box: (x3, x2, x1, x0) 7→ (y3, y2, y1, y0) with minimised
gate complexity, and the result is shown below:

t1 = x3 · x0 t2 = t1 | x2 t3 = x2 · x0

t4 = x1 ⊕ t3 t5 = x2 | t4 t6 = x1 · t4
t7 = x3 | t4 t8 = t7 · t2 t9 = t5 ⊕ t7

t10 = t9 ⊙ x3 (y0) t11 = t6 · t8 (y2) t12 = t8 · x1

t13 = x0 ⊙ t12 (y3) t14 = t1 · x2 t15 = t9 · t14 (y1),

which contains four XOR/XNOR gates, 1 AND gate, seven NAND gates, two OR gates and
one NOR gate2. This circuit (referred as SAT) can be further optimised manually. Since
a · b = ā | b̄, we can change the AND gate in t8 to NOR gate, and negate its input signals
without changing the overall functionality of the circuit. This new circuit (referred as
SAT∗) contains four XOR/XNOR gates, seven NAND gates and four NOR gates (modified
signals are coloured in red):

t1 = x3 · x0 t2 = t1 | x2 t3 = x2 · x0

t4 = x1 ⊕ t3 t5 = x2 | t4 t6 = x1 · t4
t7 = x3 | t4 t8 = t7 | t2 t9 = t5 ⊙ t7

t10 = t9 ⊙ x3 (y0) t11 = t6 · t8 (y2) t12 = t8 · x1

t13 = x0 ⊙ t12 (y3) t14 = t1 · x2 t15 = t9 · t14 (y1).

18 Z. Wei et al.

We also apply the LIGHTER (Jean et al., 2017b) tool to the 4× 4 S-box (the F24 inverter)
for four different technology libraries, which leads to the same circuit (referred as
LIGHTER) containing seven XOR/XNOR gates, four NAND gates, one NAND3 gate, one NOR
gate and one NOT gate shown in the following:

t1 = x2 ⊕ x3 t2 = t1 · x0 · x3 t3 = x1 ⊙ t2

t4 = t3 · t1 t5 = x0 ⊕ t4 t6 = x3 · t5
t7 = t1 ⊕ t6 t8 = t5 | t7 t9 = x3 ⊕ t8 (y0)

t10 = t9 · t3 t11 = t5 ⊕ t10 (y3) t12 = t7 (y1)

t13 = t11 · t12 t14 = t3 ⊙ t13 (y2).

A comparison of the above three circuits together with their synthesising results is given
in Tables 6 and 7, from which we can see that SAT∗ is always the best, whose circuit
is depicted in Figure 12.

Figure 12 The optimised circuit for the F24 inverter (SAT*)

x2

x3

x1

x0 t13 (y3)

t15 (y1)

t10 (y0)

t11 (y2)

Table 6 Gate counts for different implementations of F24 inverter, where the circuit named
Canright is the implementation of equation (8) using the method in Canright
(2005a, 2005b), and the circuit named Boyar uses the method in Boyar et al. (2013)

Circuit Gates used

XOR/XNOR AND NAND NAND3 OR NOR NOT

Canright 9 8 2
Boyar 9 6
Boyar* 9 6
SAT 4 1 7 2 1
SAT* 4 7 4
LIGHTER 7 4 1 1 1

Searching the space of tower field implementations of the F28 inverter 19

Table 7 Synthesised results for different implementations of the F24 inverter

Circuit Synthesis results

SMIC 130 nm SMIC 65 nm STM 65 nm Nangate 45 nm

Canright 30.97 30.25 28.00 28.00
Boyar 28.95 29.25 25.50 25.98
Boyar* 26.97 26.25 24.00 24.00
SAT 21.31 21.50 20.25 19.99
SAT* 20.32 20.00 19.00 19.00
LIGHTER 23.30 22.75 21.00 20.99

Figure 13 The two rightmost F24 multipliers with a shared 4-bit input

2

3

1

1

1

1

1

1

1

1

γ0

2

3

1

1

1

1

1

1

1

1

γ1

λ

4

4

4

1

4

5

1

4

5

1

1

1

1

1

1

1

1

4.3 Optimised implementation of the two F24 multipliers with 4-bit common input

Observing Figure 2, the F28 inverter contains three F24 multipliers, from which we can
identify three pairs of F24 multipliers such that each pair shares a 4-bit input signal:

20 Z. Wei et al.

the leftmost F24 multiplier and the rightmost upper F24 multiplier, the leftmost F24

multiplier and the rightmost lower F24 multiplier, and the two rightmost F24 multipliers.
It is shown in Canright (2005a, 2005b) that whenever two F24 multipliers share a
common 4-bit input signal, some XOR gates can be saved via signal reuse.

As an example, we unfold the two rightmost F24 multipliers in Figure 2 according to
Figure 6, and the schematic is shown in Figure 13. By observing Figure 13 carefully, we
can spot some outputs of XOR gates which are computed twice in the circuit (Canright,
2005a, 2005b) (labelled with same numbers in the figure). Therefore, for each pair of
F24 multipliers sharing a 4-bit input signal, we can remove five XOR gates by signal
reuse. Therefore, three pairs of F24 multipliers with shared input signals in total save
5× 3 = 15 XOR gates.

4.4 Optimised implementation of the input and output affine parts

According to equation (5), before going into the F28 inverter IT B(·), the 8-bit input
signal of the AES S-box first goes through an affine transformation

b 7→ g = M−1
t M1 · b⊕M−1

t C1,

which then spawns 18 1-bit signals (see Figure 11) subsequently fed into some nonlinear
gates (NAND, NOR). The transformation from the eights 1-bit input signals to the 18 1-bit
signals is affine, and can be represented as an 18× 8 matrix

U =



0 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1
0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0
0 1 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0
0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 1 1 0
0 1 1 0 0 1 0 1 1 1 1 0 1 0 0 0 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0



T

,

with the constant vector expanded from M−1
t C1

C =
(
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

)T
.

By applying the SAT-based method for solving shortest linear straight-line program
(SLP) (Fuhs and Schneider-Kamp, 2010), we obtain the optimal implementation of U ,
which costs 19 XOR gates3:

y17 = x0 (y17) t1 = x7 ⊕ x4 (y6) t2 = x3 ⊕ x1

t3 = x2 ⊕ t2 t4 = x6 ⊕ t3 (y7) t5 = x0 ⊕ t4 (y15)

t6 = x5 ⊕ t3 (y1) t7 = t5 ⊕ t6 (y14) t8 = x4 ⊕ t7 (y13)

t9 = t1 ⊕ t2 (y9) t10 = t1 ⊕ t8 (y11) t11 = x0 ⊕ t9 (y16)

t12 = x4 ⊕ x2 (y2) t13 = x1 ⊕ t7 (y10) t14 = x7 ⊕ x2 (y4)

t15 = t13 ⊕ t14 (y12) t16 = x7 ⊕ x1 (y0) t17 = t12 ⊕ t16 (y8)

t18 = t6 ⊕ t9 (y3) t19 = t7 ⊕ t11 (y5)

Searching the space of tower field implementations of the F28 inverter 21

where xi’s are the input signals, ti’s are intermediate signals, and yi’s are output signals.

Figure 14 The circuit for bottom part
1

1

1

1

1

1

1

1

γ0

1

1

1

1

1

1

1

1

λ

1

1

1

1

1

1

1

1

γ1

4

4

4

1

1

1

1

Similarly, according to equation (5), at the output end of the AES S-box, the 8-bit
output of the two rightmost F24 multipliers (see Figures 2 and 14) is transformed
by the affine mapping M2Mt(·)⊕ C2 to recover the polynomial basis representation.
Observing Figure 14, the eight input bits of the affine mapping (also the output bits
of the two F24 multipliers) are originated from the 18 output bits of the NAND gates.
Moreover, only XOR gates are involved to generate the eight input bits of the affine

22 Z. Wei et al.

mapping from these 18 bits. Therefore, the mapping from the 18 output bits of the NAND
gates to the eight output bits of the S-box is affine, which can be described by the
following matrix

B =



0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1
0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0
0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0
0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1
0 1 1 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1
1 0 1 0 1 1 1 1 0 1 1 0 1 0 1 0 1 1
0 0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1
0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1 1 0


.

Observing Figure 14, there are two layers of XOR gates following the 18 NAND gates.
According these two layers of XOR gates, we decompose the whole output affine
transformation (from the 18 output bits of the 18 NAND gates to the eight output bits
of the AES S-box) into two parts. The first part maps the 18 output bits of the 18
NAND gates to the 12 output bits of the first layer of 12 XOR gates, which can be
implemented with in total 12 XOR gates as shown in Figure 14. The second part maps
the 12 output bits of the 12 XOR gates to the eight output bits of the S-box, and its
matrix representation B′ is given in the following:

B′ =



0 1 0 1 0 0 0 0 0 1 0 1
0 1 0 1 0 0 0 1 0 1 0 0
0 0 1 0 1 0 1 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0 0 1
0 1 0 1 0 0 1 1 0 0 1 1
1 1 0 1 1 0 1 0 1 1 0 1
0 0 0 1 0 1 0 0 1 1 1 1
0 0 0 1 0 1 1 0 0 0 1 0


,

Again, by applying the SAT-based method for SLP (Fuhs and Schneider-Kamp, 2010)
and taking C2 into account, the affine transformation involving B′ and constant addition
at the output end can be realised as follows, requiring 17 XOR/XNOR gates4:

t1 = x2 ⊕ x0 t2 = x10 ⊕ t1 t3 = x8 ⊕ t2 (y7)

t4 = x5 ⊕ x1 t5 = x5 ⊕ x3 t6 = x7 ⊕ t5

t7 = x8 ⊕ x6 t8 = x2 ⊕ t3 t9 = x4 ⊕ t8 (y4)

t10 = t1 ⊕ t5 t11 = x9 ⊙ t6 (y5) t12 = t4 ⊙ t7 (y0)

t13 = t3 ⊕ t6 t14 = x11 ⊕ t13 (y2) t15 = t1 ⊙ t9 (y6)

t16 = t10 ⊕ t12 (y1) t17 = t4 ⊕ t9 (y3)

where xi’s are the input signals, ti’s are intermediate signals, and yi’s are output signals.

4.5 Overall implementation results and comparison

We synthesis the optimised implementations of the S-boxes (AES, Camellia, SM4) using
Synopsys Design Compiler 2014 (DC 2014) with four technology libraries, and the

Searching the space of tower field implementations of the F28 inverter 23

synthesised results5 together with their technology-independent gate counts are listed in
Table 2.6

To make the full use of the libraries to save the circuit area, Reyhani-Masoleh et.
al.’s implementations (Reyhani-Masoleh et al., 2018) exploit certain compound gates in
specific libraries (e.g., XOR3, NAND3, OAI21, AOI21, OAI32), which are not universally
available in all technology libraries. For example, the optimal implementation offered
by Reyhani-Masoleh et al. (2018) employs XOR3 and OAI32 gates, reaching 182.25 GE
under the STM 65 nm CMOS technology.

According to the results shown in Table 2, our implementation requires only 179 GE,
which beats the record set by Reyhani-Masoleh et al. (2018) even without using any
compound gates. Moreover, when the area of one XOR3 gate is smaller than the area of
two XOR gates in underlying technology library, the compound gates XOR3 can be applied
in our design to take the place of some standard XOR gates. With this improvements, the
area of our implementation of the AES S-box can be further reduced to 176.75 GE. For
the S-boxes of Camellia and SM4, it can be seen from Table 2 that the improvements
are even more obvious.

5 Conclusions

By applying state-of-the-art combinatorial logic minimisation techniques to an
exhaustive list of tower field representations of the AES, Camellia, and SM4 S-boxes
with normal bases, we identify so far the most compact implementations of these
S-boxes. The results obtained in this work can be used in compact and threshold
implementations of AES, Camellia, and SM4. As a potential further work, it is
interesting to see how to apply similar techniques to obtain compact implementations
of combined S-box/inverse S-box designs for AES, Camellia, and SM4. Moreover, this
work only focus on minimising the circuit area, it is of equal importance to investigate
how to reduce the depth of the circuit as in Li et al. (2019) and Reyhani-Masoleh et al.
(2018).

Appendices/Supplementary material are available on request by emailing the
corresponding author or can be obtained under https://github.com/zihaowei/
Tower-Field-Implementation.

Acknowledgements

The work is partially supported by the National Key R&D Program of China (Grant No.
2018YFA0704704), the Chinese Major Program of National Cryptography Development
Foundation (Grant No. MMJJ20180102), the National Natural Science Foundation
of China (61772519, 61732021, 61802400, 61802399), and the Youth Innovation
Promotion Association of Chinese Academy of Sciences.

24 Z. Wei et al.

References

Abbasi, I. and Afzal, M. (2011) ‘A compact S-Box design for SMS4 block cipher’, IT Convergence
and Services, Vol. 107, pp.641–658.

Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J. and Tokita, T. (2000)
‘Camellia: a 128-bit block cipher suitable for multiple platforms – design and analysis’, Selected
Areas in Cryptography, Vol. 2012, pp.39–56.

Bai, X., Xu, Y. and Guo, L. (2009) ‘Securing SMS4 cipher against differential power analysis and
its VLSI implementation’, IEEE Singapore International Conference on Communication Systems,
pp.167–172.

Banik, S., Bogdanov, A. and Minematsu, K. (2016a) ‘Low-area hardware implementations of CLOC,
SILC and AES-OTR’, 2016 IEEE International Symposium on Hardware Oriented Security and
Trust, HOST 2016, 3–5 May, McLean, VA, USA, pp.71–74.

Banik, S., Bogdanov, A. and Regazzoni, F. (2016b) ‘Atomic-AES: a compact implementation
of the AES encryption/decryption core’, Progress in Cryptology – INDOCRYPT 2016, 17th
International Conference on Cryptology in India, Proceedings, 11–14 December, Kolkata, India,
pp.173–190.

Beierle, C., Kranz, T. and Leander, G. (2016) ‘Lightweight multiplication in GF(2n) with
applications to MDS matrices’, Advances in Cryptology – CRYPTO 2016, 36th Annual
International Cryptology Conference, Proceedings, Part I, 14–18 August, Santa Barbara, CA,
USA, pp.625–653.

Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V. and Rijmen, V. (2014) ‘A more efficient AES threshold
implementation’, Progress in Cryptology - AFRICACRYPT 2014, 7th International Conference
on Cryptology in Africa, Proceedings, 28–30 May, Marrakesh, Morocco, pp.267–284.

Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V. and Rijmen, V. (2015) ‘Trade-offs for threshold
implementations illustrated on AES’, IEEE Trans. on CAD of Integrated Circuits and Systems,
Vol. 34, No. 7, pp.1188–1200.

Boyar, J., Matthews, P. and Peralta, R. (2013) ‘Logic minimization techniques with applications to
cryptology’, J. Cryptology, Vol. 26, No. 2, pp.280–312.

Canright, D. (2005a) A very compact Rijndael S-box, Technical Report NPS-MA-05-001,
Naval Postgraduate School [online] https://www.researchgate.net/publication/235155631_A_
Very_Compact_Rijndael_S-box (accessed 12 July 2019).

Canright, D. (2005b) ‘A very compact S-Box for AES’, Cryptographic Hardware and Embedded
Systems – CHES 2005, 7th International Workshop, Proceedings, 29 August–1 September,
Edinburgh, UK, pp.441–455.

Circuit Minimization Team (CMT) [online] http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.
html (accessed 12 July 2019).

Cnudde, T. D., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V. and Rijmen, V. (2016) ‘Masking AES
with d+ 1 shares in hardware’, Cryptographic Hardware and Embedded Systems – CHES 2016,
18th International Conference, Proceedings, 17–19 August, Santa Barbara, CA, USA, 2016,
pp.194–212.

Daemen, J. and Rijmen, V. (2002) The Design of Rijndael: AES – The Advanced Encryption Standard,
Information Security and Cryptography, Springer.

Fuhs, C. and Schneider-Kamp, P. (2010) ‘Synthesizing shortest linear straight-line programs over
GF(2) using SAT’, Theory and Applications of Satisfiability Testing – SAT 2010, 13th
International Conference, SAT 2010, Proceedings, 11–14 July, Edinburgh, UK, pp.71–84.

Guajardo, J. and Paar, C. (1997) ‘Efficient algorithms for elliptic curve cryptosystems’, Advances
in Cryptology – CRYPTO ’97, 17th Annual International Cryptology Conference, Proceedings,
17–21 August, Santa Barbara, California, USA, pp.342–356.

Searching the space of tower field implementations of the F28 inverter 25

Itoh, T. and Tsujii, S. (1988) ‘A fast algorithm for computing multiplicative inverses in GF(2m))
using normal bases’, Inf. Comput. Vol. 78, No. 3, pp.171–177.

Jean, J., Moradi, A., Peyrin, T. and Sasdrich, P. (2017a) ‘Bit-sliding: a generic technique for bit-serial
implementations of SPN-based primitives – applications to AES, PRESENT and SKINNY’,
Cryptographic Hardware and Embedded Systems – CHES 2017, 19th International Conference,
Proceedings, 25–28 September, Taipei, Taiwan, pp.687–707.

Jean, J., Peyrin, T., Sim, S.M. and Tourteaux, J. (2017b) ‘Optimizing implementations of lightweight
building blocks’, IACR Trans. Symmetric Cryptol. Vol. 2017, No. 4, pp.130–168.

Kranz, T., Leander, G., Stoffelen, K. and Wiemer, F. (2017) ‘Shorter linear straight-line programs for
MDS matrices’, IACR Trans. Symmetric Cryptol., Vol. 2017, No. 4, pp.188–211.

Li, S., Sun, S., Li, C., Wei, Z. and Hu, L. (2019) ‘Constructing low-latency involutory MDS matrices
with lightweight circuits’, IACR Trans. Symmetric Cryptol. Vol. 2019, No. 1, pp.84–117.

Li, S., Sun, S., Shi, D., Li, C. and Hu, L. (2019) ‘Lightweight iterative MDS matrices: how small
can we go?’, IACR Trans. Symmetric Cryptol., Vol. 2019, No. 4, pp.147–170.

Tan, Q. and Peyrin, T. (2020) ‘Improved heuristics for short linear programs’, IACR Trans. Cryptogr.
Hardw. Embed. Syst., Vol. 2020, No. 1, pp.203–230.

Mart́ınez-Herrera, A.F., Mex-Perera, J.C. and Nolazco-Flores, J.A. (2012) ‘Some representations of
the S-Box of Camellia in GF(((22)2)2)’, Cryptology and Network Security, 11th International
Conference, CANS 2012, Proceedings, 12–14 December, Darmstadt, Germany, pp.296–309.

Mart́ınez-Herrera, A.F., Mex-Perera, J.C. and Nolazco-Flores, J.A. (2013) ‘Merging the Camellia,
SMS4 and AES S-Boxes in a single S-Box with composite bases’, Information Security,
16th International Conference, ISC 2013, Proceedings, 13–15 November, Dallas, Texas, USA,
pp.209–217.

Mentens, N., Batina, L., Preneel, B. and Verbauwhede, I. (2005) ‘A systematic evaluation of compact
hardware implementations for the Rijndael S-Box’, Topics in Cryptology – CT-RSA 2005,
The Cryptographers’ Track at the RSA Conference 2005, Proceedings, 14–18 February, San
Francisco, CA, USA, pp.323–333.

Moradi, A., Poschmann, A., Ling, S., Paar, C. and Wang, H. (2011) ‘Pushing the limits: a very
compact and a threshold implementation of AES’, Advances in Cryptology – EUROCRYPT
2011, 30th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Proceedings, 15–19 May, Tallinn, Estonia, pp.69–88.

Paar, C. and Soria-Rodriguez, P. (1997) ‘Fast arithmetic architectures for public-key algorithms
over Galois Fields GF((2n)m)’, Advances in Cryptology – EUROCRYPT ‘97, International
Conference on the Theory and Application of Cryptographic Techniques, Proceeding, 11–15 May,
Konstanz, Germany, pp.363–378.

Reyhani-Masoleh, A., Taha, M. M. I. and Ashmawy, D. (2018) ‘Smashing the implementation records
of AES S-Box’, IACR Trans. Cryptogr. Hardw. Embed. Syst., Vol. 2018, No. 2, pp.298–336.

Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R. and Rohatgi, P. (2001) ‘Efficient
Rijndael encryption implementation with composite field arithmetic’, Cryptographic Hardware
and Embedded Systems – CHES 2001, Third International Workshop, Proceedings, 14–16 May,
Paris, France, pp.171–184.

Satoh, A. and Morioka, S. (2003) ‘Unified hardware architecture for 128-bit block ciphers AES and
Camellia’, Cryptographic Hardware and Embedded Systems – CHES 2003, 5th International
Workshop, Proceedings, 8–10 September, Cologne, Germany, pp.304–318.

Satoh, A., Morioka, S., Takano, K. and Munetoh, S. (2001) ‘A compact Rijndael hardware architecture
with S-Box optimization’, Advances in Cryptology – ASIACRYPT 2001, 7th International
Conference on the Theory and Application of Cryptology and Information Security, Proceedings,
9–13 December, Gold Coast, Australia, pp.239–254.

26 Z. Wei et al.

Stoffelen, K. (2016) ‘Optimizing S-Box implementations for several criteria using SAT solvers’, Fast
Software Encryption – FSE 2016, 23rd International Conference, Revised Selected Papers, 20–23
March, Bochum, Germany, pp.140–160.

Wolkerstorfer, J., Oswald, E. and Lamberger, M. (2002) ‘An ASIC implementation of the AES
S-Boxes’, Topics in Cryptology – CT-RSA 2002, The Cryptographer’s Track at the RSA
Conference, Proceedings, 18–22 February, San Jose, CA, USA, pp.67–78.

Notes

1 There are 22 choices for T , 22 choices for N , 24 choices for τ , 24 choices for ν, and 2
choices for each of W , Z and Y whenever T,N, τ, ν are fixed.

2 It costs about 38 minutes to obtain this 15-gate circuit on a PC. But we cannot confirm
whether there is a 14-gate circuit, since we terminated the SAT solver after about two weeks’
computation.

3 It costs about 25 days on a PC to produce this result.

4 It costs about 30 days on a PC to produce this circuit.

5 We do not have access to the STM 65 nm technology library. However, Reyhani-Masoleh
et al. (2018) provide sufficient area information for the gates involved in this particular
library, based on which we can extrapolate the results without any difficulty.

6 Any mention of commercial products or reference to commercial organisations is for
information only; it does not imply recommendation or endorsement by NIST, nor does it
imply that the products mentioned are necessarily the best available for the purpose.

