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Abstract: Probabilistic models, which can model the process noise andcan
handle the problem of missing data in the probabilistic framework, recently have
been got much attention in process monitoring and fault diagnosis area. This
paper presents a new probabilistic methodology for fault detection and diagnosis
in nonlinear processes using a variational autoencoders (VAEs) models. Two
statistic index, based on the probability density distribution of measure variables
and latent structure variable, are built to monitoring fault. Then a probabilistic
contribution analysis method, based on the concept of missing variable estimation,
is proposed for fault diagnosis. The performance of fault detection and diagnosis
is demonstrated through its application for the monitoringof Tennessee Eastman
(TE) industrial process, and the effectiveness is verified.
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1 Introduction

Industrial process monitoring and fault diagnosis is the essential measure to ensure process
safety and product quality stability, and is widely used in industrial production. With
the rapid development of industrial automation and informatisation, large-scale data has
been accumulated in industrial production, which provide strong support for data-driven
methods. Data-driven process monitoring methods are currently receiving considerably
increasing attention both in application and in research domains, especially the one based
on multivariate statistical process control (MSPC), such as principal component analysis
(PCA) (Nomikos and MacGregor, 1994), partial least squares(PLS) (Muradore and Fiorini,
2011), etc. And some extended methods are studied to resolvethe issues like nonlinear,
non-Gaussian, dynamic in academic communities and appliedin wide range of industrial
applications for fault diagnosis (Peng et al., 2017, 2016; Yin et al., 2014; Choi et al., 2005;
Yin et al., 2016; Ding et al., 2009; Zhou et al., 2016; Zhou andQin, 2008; Chen et al., 2017).
However, most traditional MSPC methods are lack of proper probabilistic mechanism for
modelling process uncertainties. To solve this problem, some traditional MSPC methods
have been extended to their probabilistic model, and are used for process monitoring.
Probabilistic PCA (PPCA) is proposed by Tipping and Bishop (1999) and used for process
monitoring by Kim and Lee (2003). Then the PPCA has been extended to the PPCA mixture
model to deal with multimode data in industrial process monitoring (Ge and Song, 2010).
A probabilistic kernel PCA method is proposed for nonlinearprocess monitoring (Ge and
Song, 2010). To realise non-Gaussian process modelling andmonitoring, ICA has been
extended to probabilistic ICA (PICA) (Zhu et al., 2016).

In this paper, variational autoencoders (VAE) is introduced to into nonlinear process
monitoring in the form of probability. VAE, proposed by Kingma and Welling (2013)), is a
probabilistic generative model that combines variationalinference with deep learning. As a
special kind of autoencoders, VAE can reduce dimensions in aprobabilistically sound way,
and provide the reconstruction probability. Through the probability density distribution of
measure variables and latent structure variables, the monitoring index can be constructed
for process monitoring.
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A further contribution of this paper is due to the fault diagnosis method. In Chen
and Sun (2009)), the authors have developed a probabilisticcontribution analysis method
based on missing variable approach. Once a fault is detected, the monitoring index will
be recalculated with on variable being missing. This will berepeated for all variables.
The variable corresponding to the smallest recalculated index will be denoted as the risky
variable. The proposed idea has been extended to PPCA mixture model for fault detection
and diagnosis in multimode processes.

Motivated by the above mentioned works, a fault diagnosis based on VAE is introduced
in this paper. Once a fault is detected, the monitoring indexof each variables will be
recalculated by probability estimate of missing variables.

The rest of this paper is organised as follows. In Section 2, the VAE is briefly introduced
. Section 3 describes the proposed monitoring approach. In Section 3, the method of missing
date estimate is inferred and the fault diagnosis approach is proposed. In Section 4, the
study on the Tennessee Eastman (TE) benchmark case is provided to evaluate the efficiency
of the proposed method. Finally, a summary of the paper is made.

1.1 Variational Autoencoders Analysis

The VAE is a directed probabilistic graphical model (DPGM) with certain types of latent
variables, which forming an autoencoder-like architecture, as show in Figure 1.

Figure 1 Encoder and decoder of a directed probabilistic graphical model (see online version
for colours)
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The most essential of VAE is the evaluation of probability densities of all variables in the
VAE model, which includep(z), andp(z|x). Thez ∼ N(0, I) is already assumed. From
a coding theory perspective, The generative modelpθ(x|z) is the probabilistic decoder,
where the datax is generated by the generative distributionpθ(x|z) conditioned onz : z ∼
pθ(z), x ∼ pθ(x|z). For the continuous value ofx, a typical choice for the parameterised
distribution is to use a neural network where the input isz and the output is a Gaussian
distribution overx. Due to the complex nonlinearity of the neural network,pθ(z|x) is
intractable. The recognition modelqφ(z|x) is introduced as the probabilistic encoder to
approximate the intractable true posteriorpθ(z|x) by a neural network withx andx as its
input and output, respectively. A variational inference method is introduced for learning the
recognition model parametersφ jointly with the generative model parametersθ.

The Kullback-Leibler divergence (KL-divergence) betweenpθ(z|X) and qφ(z) is
defined as:

DKL[qφ(z|X)||pθ(z|X)] = Ez∼q[log qφ(z|X) − log pθ(z|X)]

= Ez∼q[log qφ(z|X) − log pθ(X|z)

− log pθ(z) + log pθ(X)]

(1)
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Becauselog pθ(X) does not depend onz , then the formula can be rewritten as:

log pθ(X)−DKL[qφ(z|X)||pθ(z|X)] = Ez∼q[log pθ(X|z)]

−DKL[qφ(z|X)||pθ(z)]
(2)

The left hand side is something what we want to maximise, which maximiselog pθ(X),
and minimiseDKL[qφ(z|X)||pθ(z|X)]. The right hand side is something we can optimise
via stochastic gradient descent.

The objective of VAE is to maximise the following variational lower bound with respect
to the parametersθ andφ:

L(θ, φ;x)) = −DKL(qφ(z|x)||pθ(z)) + Eqφ(z|x)[log pθ(x|z)] (3)

Here we give the solution when both the priorpθ(z) ∼ N(0, I) and the posterior
approximationqφ(z|x) are Gaussian. LetJ be the dimensionality ofz. Letµ andσ denote
the variational mean an std. evaluated at datapointx, and Letµj andσj simply denote the
jth element of these vectors. Then:

−DKL(qφ(z|x)||pθ(z)) =

∫

qθ(z)(log pθ(z)− log qθ(z))dz

=
1

2

J∑

j=1

(1 + log((σj)
2
)− (uj)

2
− (σj)

2
)

(4)

Then the variational lower bound can be represented as:

L(θ, φ;x) ≃
1

2

J∑

j=1

(1 + log((σj)
2
)− (uj)

2
− (σj)

2
)

+
1

L

L∑

l=1

log pθ(x|z
l)

(5)

wherezl = u+ σ ⊙ ε andε(l) ∼ N(0, I).
The algorithm for training the VAE is shown in Algorithm 1.

Algorithm 1 Minibatch version of the Variational autoencoder training algorithm
θ, φ← Initialise parameters
Repeat

X
M ← Random minibatch of M datapoints (drawn from full dataset)

ε← Random samples from noise distributionp(ε)
g←∇θ,φL̃

M (θ, φ;XM , ε) (Gradients of minibatch estimator)
θ, φ← Update parameters using gradients ofg

Until convergence of parameters (θ, φ)
Returnθ, φ
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1.2 The VAE-based fault detection method

A fault detection method that use VAE is proposed to calculate the probability score of
expectationE(z|x) in the prior distributionpθ(z) and the probability score of observed
datax in the probability distributionp(x|x̂), which x̂ denotes as the reconstruction ofx .
The calculation ofz andx̂ is show in Figure 2.

The fault detection based VAE is constructed as an unsupervised learning framework,
using only normal data to train the VAE. In the training process, the conditional probability
distribution ofqφ(z|x) in latent space andpθ(z|x) in original input space were learned
by optimising the variational lower bound. In the detectionprocess, the detection data is
mapped to latent space by recognition model, and a number of samples are drawn from
conditional probability distribution in latent space. Foreach sample, the reconstruction
probability distribution is calculated by generative model. Finally, the anomaly score were
calculated to predicate fault in latent space and original input space, respectively.

Figure 2 The calculation ofz andx̂ (see online version for colours)
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1.2.1 Monitoring chart of latent variable

Since prior probabilityz ∼ N(0, I) is assumed, the squared Mahalanobis norm ofz follows
χ2(J) distribution, whichJ denotes as the dimensions of laten variable. Given test dataxi,
z is the estimate ofz|xi:

z ≡ E[z|xi] = u
z
(i) (6)

whereµzi , σzi is the mean and s.d., calculated by recognition modelqφ(z|x).
Then Hotelling’sT 2 test statistic is denoted as:

T 2 = ‖z‖
2 (7)

The thresholds for the fault detection in latent space can bedetermined with a given
confidence level as follows:

Jth,T 2 = χ2
α(J) (8)

whereχ2
α(J) denotes theχ2-distribution withJ degrees of freedom andα is user-specified

significance level.
We regard the process is normal whenT 2 fall into in-control withα LOS:

T 2 = ‖z‖2 ≤ χ2
α(J) (9)
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1.2.2 Monitoring chart of original input space

Given test dataxi, then the posterior probability distributionz|x(i) ∼ N(u
z
(i) , σ

z
(i)) can

be calculated.
ThenL samples is drawn fromN(uz(i) , σz(i)). For each samplez(i,j), the probability

distribution x̂
(i,l)|z(i,l) ∼ N(u

x̂
(i,l) , σ

x̂
(i,l)), whereux̂(i,l) , σx̂(i,l) is the mean and s.d.,

calculated by generative modelpθ(z|x).
Then input variablexi can be transformed to the standard Gaussian via whitening:

x
w
(i,l) =

xi − u
x̂

(i,l)

σx̂(i,l)

(10)

Andx
w
(i,l) ∼ N(0, I).

SPE (squared prediction error) test statistic denotes as:

SPE =

∥
∥
∥
∥
∥

1

L

L∑

l=1

x
w
(i,l)

∥
∥
∥
∥
∥

2

(11)

The thresholds for the fault detection in original input space can be determined with a given
confidence level as follows:

Jth,SPE = χ2
α(n) (12)

whereχ2
α(n) denotes theχ2-distribution withn degrees of freedom andα is user-specified

significance level.
Therefore, the detection logic is:

{
SPE ≤ Jth,SPEandT

2 ≤ Jth,T 2 , fault− free
SPE > Jth,SPEorT

2 > Jth,T 2 , faulty.
(13)

The calculate process of VAE-based fault detection algorithm is shown in Algorithm 2.

Algorithm 2 Variational autoencoder based fault detection
θ, φ← train a variational autoencoder using the normal datasetX

Input: sample datax(i)

u
z
(i) , σ

z
(i) = fθ(z|x

(i))

T 2 = ‖u
z
(i)‖

2

z
(i,l) ← Draw L samples fromz|x(i) ∼ N(u

z
(i) , σ

z
(i))

for l=1 to L do
u
x̂
(i,l) , σ

x̂
(i,l) = gφ(x|z

(i,l))
end for

SPE =

∥

∥

∥

∥

1

L

L
∑

l=1

x−u
x̂
(i,l)

σ
x̂
(i,l)

∥

∥

∥

∥

2

if SPE ≤ Jth,SPEandT
2 ≤ Jth,T2 then

x
(i) is an anomaly

else
x

(i) is an faulty
end for
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2 The VAE-based fault diagnosis method

Once the fault was successfully detected by the two monitoring statistics, the root cause of
the fault should be find by fault diagnosis. A missing variable estimation-based contribution
analysis method is proposed for fault diagnosis. The objective of contribution analysis is to
identify which variables are the most responsible for the occurrence of the process fault. In
general contribution analysis may not explicitly reveal the root-cause of the onset of faults,
but it is undoubtedly helpful in pinpointing the inconsistent variables that should undergo
further diagnosis procedures. Assume that a fault is causedby the change of one variable,
if the variable is changed by the estimation of other variables, the fault should disappear.
Probabilistic model is used to estimate one variable by other variables, then the estimated
variable is used to computeSPE andT 2 test statistic. The estimated variable, which caused
fault, will reduce theSPE andT 2 test statistic. In the diagnosis process, the key variables
can be observed from the chart which original signal test statistic subtracted reconstruction
signal test statistic.

For n dimensional datax, each time one variable is regard as missing. Letxd(d =
1, 2, . . . , n) be the missing variable, andx−d denotes as the vector of other observed
variables inx. Ford = 1 : n, reconstructed variablẽxd can be calculated by the expected
value of missing variableE(x

−d)(xd)given the other variables. Then the monitoring statistic
SPEd andT 2

d with x̃d is re-calculated. If thedth variable contributes significantly to the
data being detected as faulty, then the re-calculated statistic will be much small than the
original monitoring statistic. Therefore, the differencebetween re-calculated statistic and
original statistic can measure the impact of missing variable on the fault.

The contribution value of each variable in this work is defined as:

RBCT 2

d = T 2 − T 2
d

RBCSPE
d = SPE − SPEd

(14)

The rest of this section will discusses how to estimate the missing variable.
The computation forp(xd|x−d) requires the marginalisation of the latent variablesz

from the joint distributionp(xd, z|x−d).

p(xd|x−d) =

∫

p(xd, z|x−d)dz

=

∫

p(xd|z)p(z|x−d)dz

(15)

Using Bayes formula,p(z|x−d) can be formulated as:

p(z|x−d) =
p(x−d|z)p(z)

∫
p(x−d|z)p(z)dz

(16)

The conditional distributionp(xd|x−d) can be re-written as:

p(xd|x−d) =

∫

p(xd|z)p(z|x−d)dz

=

∫
p(xd|z)p(x−d|z)p(z)dz
∫
p(x−d|z)p(z)dz

(17)
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Then the expectation ofxd can be expressed as:

E(x
−d)(xd) =

∫

xdp(xd|x−d)dxd

=

∫ ∫
xdp(xd|z)p(x−d|z)dxddz
∫
P (x−i|z)P (z)dz

=

∫
u
xd|z

p(x−d|z)p(z)dz
∫
p(x−d|z)p(z)dz

=

K∑

k=1

u
xd|zk

p(x−d|zk)

K∑

k=1

p(x−d|zk)

(18)

whereµ
xd|z

is the mean ofp(xd|z). Because of the assumption that all variables in datax

are conditionally independent givenz, the conditional distributionp(x−d|zk) andp(xd|z)
can be calculated by the generative modelpθ(x|z). And the samples ofz can be drawn from
the recognition modelqφ(z|x). To improve estimation accuracy of variablexd, a k-step
iterative method is used in the estimation of missing variable, which the estimated variable
replaces the original variablexd to update the calculated value of missing variable byk

times.

3 Case study

In this section, fault detection and diagnosis based on the proposed VAE method is
demonstrated on the Tennessee Eastman benchmark problem (Downs and Vogel, 1993)).

Figure 3 illustrates the flowchart of the TE process with the plant-wide control structure
in ref (Nomikos and MacGregor, 1995)). The model is widely accepted as a challenging
benchmark for control and monitoring studies. Five major units, i.e., reactor, condenser,
separator, compressor and stripper, constitute the whole process. The process has 41
measurements and 12 manipulated variables. The measurements include 22 continuous
process measurements and 19 sampled process measurements.Totally 21 different faults
has been designed and the dataset used in this paper are givenin Chiang and Russell (2000))
and is widely accepted for process monitoring and fault diagnosis, which can be downloaded
from http://web.mit.edu/braatzgroup/links.html. The dataset includes 22 training sets and
22 testing sets. Except that one testing set was obtained under normal operational condition,
the other 21 sets were collected under 21 different faulty conditions for 48 operation hours
and 960 samples are obtained for each testing set. For each of21 faulty testing sets, the
fault was introduced in at 8th operation hour (161th sample). Similarly, the training sets
are also composed of one normal operational set and 21 faultyoperational sets. These 21
process faults include 7 step faults, 5 random faults, 3 sticking and slow change fault, and
6 unknown process faults.

3.1 Simulation and analysis

In this paper, a total of 33 process measurements are selected as measured variables, listed
in Table 1. The testing set and training set collected under the normal situation are used
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as training dataset. The 21 faulty testing sets are used to validate the performances of the
models.

Figure 3 Flowchart of the TE process

Table 1 Monitored variables in the Tennessee Eastman process

ID Variable description ID Variable description
x1 A feed (Stream 1) x18 Stripper temperature
x2 D feed (Stream 2) x19 Stripper steam flow
x3 E feed (Stream 3) x20 Compressor work
x4 A and C feed (Stream 4) x21 Reactor cooling water outlet temperature
x5 Recycle flow (Stream 8) x22 Separator cooling water outlettemperature
x6 Reactor feed rate (Stream 6) x23 MV to D feed flow (Stream 2)
x7 Reactor pressure x24 MV to E feed flow (Stream 3)
x8 Reactor level x25 MV to A feed flow (Stream 1)
x9 Reactor temperature x26 MV to total feed flow (Stream 4)
x10 Purge rate (Stream 9) x27 Compressor recycle valve
x11 Product separator temperature x28 Purge valve (Stream 9)
x12 Product separator level x29 Separator pot liquid flow (Stream 10)
x13 Product separator pressure x30 Stripper liquid productflow (Stream 11)
x14 Product separator underflow (Stream 10) x31 Stripper steam valve
x15 Stripper level x32 Reactor cooling water flow
x16 Stripper pressure x33 Condenser cooling water flow
x17 Stripper underflow (Stream 11)

The detection process of proposed VAE method is applied to monitor the TE process in
comparison with the traditional PPCA-based methods. Both the generative model and the
recognition model are set to 3-tier structure, which have one hidden layer, and the size of
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hidden layer is 50. The dimension of latent space is determined by 5-fold cross validation.
The relationship betweenEqφ(z|x)[log pθ(x|z)]and the dimension ofz is shown in Figure 4.
Considering the complexity and performance of model, 10 is selected for the size of latent
variables. In order to be fair, the component numbers of PPCAmodels is also selected as
10. The confidence level of thresholds ofSPE andT 2 is set as 99%. Tow types of fault are
enumerated to demonstrate the efficiency of VAE.

Figure 4 The relationship between and the dimension of latent space (see online version
for colours)
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Fault 5 is a step change in the internal temperature of condenser cooling water, and it causes
a step change in the flow rate of the outlet stream of the condenser, which can affect the
temperature in the separator as well as the cooling water outlet temperature of the separator.
The monitoring results of VAE and PPCA are show in Figure 5. The fault was detected
by PPCA at the 161th sample, but it was soon compensated by thecontrol system and
its SPE test statistic went below the confidence limit at the 394th sample. The time that
fault was detected by VAE is 161th. And its test statisticSPE was still greater than the
confidence limit after the 394th sample. In Figure 6, the fault kept affecting variable 33.
The other variables were pulled back to their normal values after 394th sample with system
compensation. The low value of variable 33 given a low detection rate of PPCA. In contrast,
the method of VAE can detect the low change of variable 33.

Fault 10 is fault where a random variation is introduced in C feed temperature, which
may cause a change to the condition of stripper and condenser. The monitoring results
of VAE and PPCA are show in Figure 7. Fault 10 can be detected byPPCA with a low
detection rate (34.1% forT 2 and 39.1% forSPE). The monitoring result of VAE is show
in Figure 7(a) and (b). It is obvious that the SPE statistic ismuch better than PPCA. The
fault detection rate of VAE is 82.4% for T2 and 32.0% for SPE. Part variables are shown
in Figure 8. It can be seen that most variables changed slightly between 350th sample and
600th sample. It cause the low detection rate of PPCA. But thefault can still reflected in
SPE statistic of VAE.
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Figure 5 Monitoring result of VAE (a) (b) and PPCA (c) (d) for fault 5 (see online version
for colours)
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Figure 6 Process variables in fault 5 (see online version for colours)
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All monitoring results (FAR and FDR) on 21 types of fault by VAE and PPCA are listed in
Table 2. Faults 3, 9, 15 are very subtle faults that are hard todetect. Both PPCA and VAE
are failed to detect these faults. Except these faults, the detection rates of proposed method
are over 50%. Especially, the detection rates of VAE for fault 5, 10, 16, 19 and 20 are much
higher than PPCA.
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Figure 7 Monitoring result of VAE (a) (b) and PPCA (c) (d) for fault 10 (see online version
for colours)
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Figure 8 Process variables in fault 10 (see online version for colours)
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Fault 2 is a step change in the B composition and the A/C ratio constant (stream 4). B is
the inert component, which will cause a change in the purge rate, i.e., variable No. 8 (Purge
rate) in stream 9. Furthermore, the A/C ratio constant will be reflected in stream 4, and the
action of some control loops will also change other process variables. Figure 9 shows part of
variables (Original variables and reconstruction variables) for fault 2. The original variables
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are represented by bule lines, and the reconstruction variables are represented by red lines.
Fault 2 were triggered after the 160th sample. Before the fault occurred, reconstruction
variables can flow original variables well. While original variables ware influenced by fault,
reconstruction variables can reduce the influence by estimating with other variables. And
reconstruction variables can also reduce signal nosie. Therefore, the approach, that missing
variables probability estimate of by VAE, is reasonable to fault reconstruct. Figure 10 shows
the result of fault detection and diagnosis for fault 2. NO. 10 (Purge rate (Stream 9)) and
NO. 28 (Purge valve (Stream 9)) are identified as the primary variables.

Table 2 FDRs and FASs of the 21 faults in the TE benchmark

VAE(%) PPCA(%)
FAR FDR FAR FDR FAR FDR FAR FDR

Fault no. (SPE) (SPE) (T 2) (T 2) (SPE) (SPE) (T 2) (T 2)
1 0.6 99.8 0.0 99.8 2.5 99.9 0.6 99.1
2 0.0 98.4 0.6 98.6 0.6 98.1 1.3 98.5
3 3.8 5.4 0.6 1.5 1.9 5.0 0.6 3.0
4 0.6 98.5 0.6 2.3 3.1 100.0 1.9 10.6
5 0.6 100.0 0.6 25.0 3.1 28.6 1.9 25.6
6 0.6 100.0 0.0 96.5 1.3 100.0 0.6 99.4
7 0.0 100.0 0.0 35.9 1.9 100.0 0.0 100.0
8 0.0 97.8 0.0 97.8 1.3 96.5 0.0 96.9
9 8.8 3.4 4.4 1.1 5.6 4.0 5.0 2.9
10 0.6 82.4 0.6 32.0 1.9 34.1 0.6 39.1
11 0.0 73.5 1.3 4.5 3.8 79.9 0.6 27.1
12 1.9 99.6 1.3 97.5 2.5 96.4 0.6 98.3
13 0.0 95.1 0.0 94.6 1.3 95.3 0.0 93.9
14 0.6 100.0 0.0 56.4 2.5 100.0 1.3 85.1
15 0.6 9.0 0.6 3.1 2.5 5.0 0.6 3.8
16 11.9 86.0 3.1 16.0 4.4 34.5 7.5 21.5
17 0.6 95.9 0.0 64.5 5.0 95.0 0.0 76.5
18 0.6 90.0 0.0 87.9 4.4 90.1 0.0 89.3
19 0.0 80.6 0.0 0.5 1.3 48.9 0.0 1.3
20 0.0 71.4 0.0 54.8 3.1 54.3 0.0 38.0
21 3.1 56.0 0.6 51.1 5.0 52.9 0.0 33.1

Fault 2 and 11 are used to test the performance of fault diagnosis, and show in Table 3.

Table 3 Descriptions of process faults

Fault no. Process variables Type
2 B composition,A/Crationconstant Step
11 Reactor cooling water inlet temperature variation

Fault 11 is the fault where a random variation is introduced in the reactor cooling water
inlet temperature, and the temperature of the reactor fluctuates. And it will cause NO. 9
(Reactor temperature) and No. 32 (Reactor cooling water flow) fluctuate sharply. Figure 11
shows the changed tend of two variables. The reconstructionvariables eliminated fluctuate
during fault period. The fault detection and diagnosis result are show in Figure 12. Fault
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11 can be detected by statisticSPE after the 167th sample, as shown in Figure 12(a). So
theSPE contribution plot is used to identify fault variables. Figure 12(b) shows No. 9 and
No. 32 are the primary variables, in conformity with mechanism analysis of fault 11.

Figure 9 Original and reconstruction variables for fault 2 (see online version for colours)
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Figure 10 Fault detection and diagnosis for fault 2 based on VAE: (a) fault detection result and
(b) fault diagnosis result (see online version for colours)

0 100 200 300 400 500 600 700 800 900 1000

sample

0

20

40

60

80

100

120

140

160

180

T
2

T2

T2

T2 RBC

100 200 300 400 500 600 700 800 900

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8
104 SPE

SPE

(a)

SPE RBC

100 200 300 400 500 600 700 800 900

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b)



A variational autoencoders approach for process monitoring 243

Figure 11 Original and reconstruction variables of no. 9 and no. 32 forfault 11 (see online version
for colours)
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Figure 12 Fault detection and diagnosis for fault 11 based on VAE: (a) fault detection result and
(b) fault diagnosis result (see online version for colours)
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4 Conclusion

VAE, one kind of deep learning algorithm, is used in process monitoring and fault diagnosis.
In monitoring process, the probability distribution of original space and latent space are
calculated, then test statistics on the two space are designed to monitoring fault. In diagnosis
process, a missing variable based contribution analysis methodology is proposed. The
probabilistic framework of VAE provides a natural way of handling the missing variables
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that form the basis of the contribution analysis. The application of PPCA and VAE to TE
process is discussed in detail. The case studies demonstrate that compare with PPCA, the
detection perform of VAE is greatly improved. And the proposed contribution analysis can
provide significant information to facilitate process fault diagnosis.

Future work is focused on extending the proposed contribution analysis for the
monitoring of plant-level process.

Acknowledgement

We would also like to thank the National Key R&D Program of China
(No.2017YFB0306403) for funding. Dr. Kai Zhang and Prof. Kaixiang Peng would like to
thank the Natural and Science Foundation of China (NSFC) (Grant #61703036,#61473033
and #61773053 for funding.

References

Chen, T. and Sun, Y. (2009) ‘Probabilistic contribution analysis for statistical process monitoring: a
missing variable approach’,Control Engineering Practice, Vol. 17, No. 4, pp.469–477.

Chen, Z., Ding, S.X., Peng, T., Yang, C. and Gui, W. (2017) ‘Fault detection for non-Gaussian
processes using generalized canonical correlation analysis and randomized algorithms’,IEEE
Transactions on Industrial Electronics, Vol. 65, No. 2, pp.1559-1567.

Chiang, L.H., Russell, E.L. and Braatz, R.D. (2000)Fault Detection and Diagnosis in Industrial
Systems, Springer Science & Business Media, pp.103-120.

Choi, S.W., Lee, C., Lee, J.M., Park, J.H. and Lee, I.B. (2005) ‘Fault detection and identification of
nonlinear processes based on kernel PCA’,Chemometrics and Intelligent Laboratory Systems,
Vol. 75, No. 1, pp.55–67.

Ding, S.X., Zhang, P., Naik, A., Ding, E.L. and Huang, B. (2009) ‘Subspace method aided data-driven
design of fault detection and isolation systems’,Journal of Process Control, Vol. 19, No. 9,
pp.1496–1510.

Downs, J.J. and Vogel, E.F. (1993) ‘A plant-wide industrialprocess control problem’,Computers and
Chemical Engineering, Vol. 17, No. 3, pp.245–255.

Ge, Z. and Song, Z. (2010) ‘Kernel generalization of PPCA fornonlinear probabilistic monitoring’,
Industrial and Engineering Chemistry Research, Vol. 49, No. 22, pp.11832–11836.

Ge, Z. and Song, Z. (2010) ‘Mixture Bayesian regularizationmethod of PPCA for multimode process
monitoring’,AIChE Journal, Vol. 56, No. 11, pp.2838–2849.

Kim, D. and Lee, I.B. (2003) ‘Process monitoring based on probabilistic PCA’,Chemometrics and
Intelligent Laboratory Systems, Vol. 62, No. 2, pp.109–123.

Kingma, D.P. and Welling, M. (2013) ‘Auto-encoding variational bayes’, arXiv preprint,
arXiv:1312.6114.

Muradore, R. and Fiorini, P. (2011) ‘A PLS-based statistical approach for fault detection and
isolation of robotic manipulators’,IEEE Transactions on Industrial Electronics, Vol. 59, No. 8,
pp.3167–3175.

Nomikos, P. and MacGregor, J.F. (1994) ‘Monitoring batch processes using multiway principal
component analysis’,AIChE Journal, Vol. 40, No. 3, pp.1361–1375.

Nomikos, P. and MacGregor, J.F. (2009) ‘Multivariate SPC charts for monitoring batch processes’,
Technometrics, Vol. 37, No. 1, pp.41–59.



A variational autoencoders approach for process monitoring 245

Peng, K., Zhang, K., You, B., Dong, J. and Wang, Z. (2016) ‘A quality-based nonlinear fault diagnosis
framework focusing on industrial multimode batch processes’, IEEE Transactions on Industrial
Electronics, Vol. 63, No. 4, pp.2615–2624.

Peng, K.X., Ma, L. and Zhang, K. (2017) ‘Review of quality-related fault detection and diagnosis
techniques for complex industrial processes’,Acta Automatica Sinica, Vol. 43, No. 3,
pp.349–365.

Tipping, M.E. and Bishop, C.M. (1999) ‘Probabilistic principal component analysis’,Journal of the
Royal Statistical Society: Series B (Statistical Methodology, Vol. 61, No. 3, pp.611–622.

Yin, S., Ding, S.X., Xie, X. and Luo, H. (2014) ‘A review on basic data-driven approaches for
industrial process monitoring’,IEEE Transactions on Industrial Electronics, Vol. 63, No. 11,
pp.6418–6428.

Yin, S., Gao, H., Qiu, J. and Kaynak, O. (2016) ‘Fault detection for nonlinear process with
deterministic disturbances: A just-in-time learning based data driven method’,IEEE Transactions
on Cybernetics, Vol. 47, No. 11, pp.3649–3657.

Yu, J. and Qin, S.J. (2008) ‘Multimode process monitoring with Bayesian inference-based finite
Gaussian mixture models’,AIChE Journal, Vol. 54, No. 7, pp.1811–1829.

Zhou, L., Li, G., Song, Z. and Qin, S.J. (2016) ‘Autoregressive dynamic latent variable models
for process monitoring’,IEEE Transactions on Control Systems Technology, Vol. 25, No. 1,
pp.366–373.

Zhu, J., Ge, Z. and Song, Z. (2016) ‘Non-Gaussian industrialprocess monitoring with probabilistic
independent component analysis’,IEEE Transactions on Automation Science and Engineering,
Vol. 14, No. 2, pp.1309–1319.




