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Abstract: This manuscript describes a new procedure to design a controller
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Nevalinna-pick theory. In this process, First, a high-order unstable interval
system is converted into a reduced-order model in which improved Routh table
truncation and time-moment matching techniques are applied. The denominator
and numerator of reduced- order model are evaluated by improved Routh table
truncation and time-moment matching technique, respectively. Next, employing
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1 Introduction

During last decades, the control system design has been an important issue in the field
of engineering. Several times, the controller design process becomes very complex due
to uncertainty in the system which arises because of variation of system parameters, un-
modelled dynamics, nonlinear dynamics of the plant, identification error, etc. It is quite
difficult to take care of these uncertainties. To tackle these problems associated with
uncertainty, robust controller is good choice.

Robust stability is covered in detail in literature. Popov criterion is generalised to
problems with parametric uncertainty by Dahleh et al. (1993). Wei (1994) stabilised linear
time-invariant plants via constant state feedback control. Shieh et al. (1995) digitally
redesigned the cascaded analogue controller for the sampled-data interval system. The paper
(De Santis and Vicino, 1996) utilised diagonal dominance for the robust stability of MIMO
interval plants. Shieh et al. (1996) formulated a robust digital control law from a robust
analogue control law for hybrid control of uncertain systems by converting continuous
interval systems into discrete interval systems. Kimura (1984) designed a fixed controller
for a class of transfer functions using the Nevanlinna-Picktheory. A few are also available
on the robust stability Chapellat et al. (1993) of interval system.

Recently, several methods to design controllers for uncertain systems are proposed
(Matuš and Prokop, 2016; Patre and Bhiwani, 2013; Kumar and Mummadi, 2020). In Matuš
and Prokop (2016), authors proposed a technique to design a PID controller for interval
systems. This technique is based on plotting the stability boundary locus in P-I plane.
Patre and Bhiwani (2013) suggested a method of designing a robust controller for fuzzy
parametric uncertain systems (FPUS). The method is based onswitching of the FPUS into
an interval state space controllable canonical form of system.

This manuscript is an extension of the Nevanlinna-Pick theory (Kimura, 1984) to the
interval system using the Kharitonov theorem. It proposes an algorithm to reduce the order
of unstable high order interval system into an unstable reduced order model (UROM) using
Routh approximants and time-moment matching technique preceded by designing robust
controllers to stabilise such UROM. As Kharitonov (1990) stated that every interval system
could be written in the form of the Kharitonov rational systems. Keeping this in mind,
Kharitononv theorem is applied to UROM to convert it into rational systems. Later, the
Nevanlinna-Pick theory is utilised to design controllers for unstable systems around a certain
uncertainty of unstable rational systems (Kimura, 1984).

The advantage of the proposed method is that it provides controller for unstable high
order uncertain system in fixed range of uncertainty. The interval system is defined by
one interval equation, but, controller designed is not expressed in terms of single interval
equation. It is the limitation of the proposed method. Finally, an illustrative example is
discussed which explains the method and its usefulness.
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The remaining outline of the investigation is as follows: Section 2 describes Kharitonov
theorem, Section 3 explains the procedure of model order reduction, the definition of robust
stabilisability is given in Section 4, the Nevanlinna-Picktheory is discussed in Section 5, the
condition for robust stabilisability is specified in Section 6, Section 7 justifies the method
with an illustrative example, and finally conclusion is provided in Section 8.

2 Kharitonov theorem

Kharitonov (1990) suggested that an interval polynomial can be explained by its four vertex
polynomials. Let,PI be an interval polynomial where

PI = [a−0 , a
+
0 ] + [a−1 , a

+
1 ]s+ · · ·+ [a−n−1, a

+
n−1]s

n−1 + [a−n , a
+
n ]s

n (1)

Then, it’s four vertex polynomials can be written as

p1 = a−0 + a−1 s+ a+2 s
2 + · · ·

p2 = a−0 + a+1 s+ a+2 s
2 + · · ·

p3 = a+0 + a−1 s+ a−2 s
2 + · · ·

p4 = a+0 + a+1 s+ a−2 s
2 + · · ·

(2)

In this manner, each numerator and denominator of interval system has four vertex
polynomials. Consider a proper interval systemTf given as

Tf =
[n−

0 , n
+
0 ] + [n−

1 , n
+
1 ]s+ · · ·

[d−0 , d
+
0 ] + [d−1 , d

+
1 ]s+ [d−2 , d

+
2 ]s

2 + · · ·
(3)

For equation (3), numerator vertex polynomials can be written as

n1 = n−

0 + n−

1 s+ n+
2 s

2 + · · ·

n2 = n−

0 + n+
1 s+ n+

2 s
2 + · · ·

n3 = n+
0 + n−

1 s+ n−

2 s
2 + · · ·

n4 = n+
0 + n+

1 s+ n−

2 s
2 + · · ·

(4)

and in the same manner, denominator vertex polynomials for (3) are given as

d1 = d−0 + d−1 s+ d+2 s
2 + · · ·

d2 = d−0 + d+1 s+ d+2 s
2 + · · ·

d3 = d+0 + d−1 s+ d−2 s
2 + · · ·

d4 = d+0 + d+1 s+ d−2 s
2 + · · ·

(5)
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Total 16 rational transfer functions can be framed from equations (4) and (5) as presented
by equation (6).

T11 =
n1

d1
, T12 =

n1

d2
, T13 =

n1

d3
, T14 =

n1

d4

T21 =
n2

d1
, T22 =

n2

d2
, T23 =

n2

d3
, T24 =

n2

d4

T31 =
n3

d1
, T32 =

n3

d2
, T33 =

n3

d3
, T34 =

n3

d4

T41 =
n4

d1
, T42 =

n4

d2
, T43 =

n4

d3
, T44 =

n4

d4

(6)

3 Model order reduction

In the proposed method, initially high order unstable interval system is converted into a
multiplication of two systems, i.e., stable high order system and unstable system. Later,
stable high order system is converted into reduced order model (ROM) using the techniques
proposed in Dolgin (2005) and Singh et al. (2017). In this method, the denominator and
numerator of ROM are derived by Dolgin (2005) and Singh et al.(2017), respectively.
The reason behind doing this is that the use of Dolgin (2005) produces stable ROM for
stable system. Simultaneously, derived formulation for time moments in Singh et al. (2017)
confirms better steady-state response matching. The outline of the method is given as
follows.

Let high order unstable interval system be

TUF =
[n−

0 , n
+
0 ] + [n−

1 , n
+
1 ]s+ · · ·+ [n−

n − 1, n+
n − 1]sn − 1

[d−0 , d
+
0 ] + [d−1 , d

+
1 ]s+ [d−2 , d

+
2 ]s

2 + · · ·+ [d−n , n
+
n ]sn

(7)

It can also be re-written (Appendix A) as

TUF =

∑y−1
i=0 [n

−

iu
, n+

iu
]si

∑y

i=0[d
−

iu
, d+iu ]s

i
×

∑x−1
i=0 [n

−

is
, n+

is
]si

∑x

i=0[d
−is, d

+
is
]si

(8)

TUF = TUF 1
TSHF (9)

whereTUF1
is unstable interval system andTSHF is high order stable transfer function.

From (8),TSHF is given as

TSHF =

∑x−1
i=0 [n

−

is
, n+

is
]si

∑x

i=0[d
−is, d

+
is
]si

. (10)

For the sake of calculations, equation (10) can also be denoted as

TSHF =
n0 + n1s+ · · ·+ ny−1s

y−1

d0 + d1s+ · · ·+ dysy
(11)

TSHF is converted intoTSRM , i.e., stable ROM. In this work, firstly, the denominator of
ROM is obtained from the method proposed in Dolgin (2005) andlater, numerator of ROM
is calculated by the time moment matching technique proposed in Singh et al. (2017). The
detailed procedure for obtaining the denominator and numerator is discussed as follows.
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3.1 Denominator

Let the denominator of high order interval system (11) be

DTSHF
= [d−0s , d

+
0s
] + [d−1s , d

+
1s
]s+ ...+ [d−xs

, d+xs
]sx (12)

Routh table for (12) is given as

Table 1 Routh table

sx [d−xs
, d+xs

] [d−
(x−2)s

, d+
(x−2)s

] · · · · · ·

sx−1 [d−
(x−1)s

, d+
(x−1)s

] [d−
(x−3)s

, d+
(x−3)s

] · · ·

...
...

. . .
s [d−

(x,1)s
, d+

(x,1)s
]

s0 [d−
(x+1,1)s

, d+
(x+1,1)s

]

where

d(i,j)s = d(i−2,j+1)s −
d̂(i−2,1)

d̂(i−1,1)

× d(i−2,j+1)s
(13)

In equation (13), the interval subtraction operation Dolgin (2005) is taken as

[a1, a2]− [b1, b2] = [a1 − b1, a2 − b2] (14)

To ensure the existence ofd̂(i,j)s Dolgin (2005), the uncertainty ind(i−1,j+1)s is narrowed
in the following way:

d(i−1,j+1)s =

[

max(d(i−1,j+1)s , d̂(i−1,j+1)s −
1

2
K.L(i−2,j+1))

min(d̄(i−1,j+1)s , d̂(i−1,j+1)s +
1

2
K.L(i−2,j+1))

] (15)

whereL(i−2,j+1) = d̄(i−2,j+1)s − d(i−2,j+1)s , d̄(i−2,j+1)s andd̄(i−2,j+1)s are upper limit

and lower limit of interval coefficient̄d(i−2,j+1)s , d̂(i,j)s is the mid-point of the interval

d̂(i,j)s , andK =
|d̂(i−1,1)s

|

|d̂(i−1,2)s|
+|d̂(i−1,1)s

|
.

Using Table 1, denominator of ROM can be written as

DTSRM
= [d−(x−r+1,1)s

, d+(x−r+1,1)s
]sr + [d−(x−r+2,1)s

, d+(x−r+2,1)s
]sr + · · · (16)

For the sake of calculation, the denominator of ROM is denoted as

DTSRM
= d̂rs

r + d̂r−1s
r−1 + ...+ d̂1s+ d0 (17)
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3.2 Numerator

After evaluating denominator, numerator of ROM can be calculated as follows.
Suppose

NTSRM
= n̂rs

r + n̂r−1s
r−1 + ...+ n̂1s+ n̂0 (18)

Using equations (17) and (18), ROM can be written as follows

TSRM =
NSRM

DSRM

(19)

In terms of time-moments, equations (11) and (19) can also begiven as

TSHF = t0 + t1s+ t2s
2 + ... (20)

TSHM = t̂0 + t̂1s+ t̂2s
2 + ... (21)

where

t̂k =
n̂k

d̂0
+

k−1∑

i=0

d̂k−i t̂i

d̂0
, k = 0, 1, 2, ... (22)

and

tk =
nk

d0
+

k−1∑

i=0

dk−iti

d0
, k = 0, 1, 2, ... (23)

On comparing time-moments as

t̂k = tk, k = 0, 1, 2, ... (24)

numerator coefficients of ROM can be calculated.

4 Robust stabilisability

Robust stabilisability Kimura (1984) is a very important condition for interval in class.
Following definitions are used for robust stabilisability.

Definition 1: A classC(f0(s), v(s)) is defined for a rational transfer functionf(s) if

• f(s) andf0(s) must have same number of poles on right hand side ofs−plain
(unstable poles).

• |f(s)− f0(s)| ≤ |v(s)|, |v(s)| > 0, ∀s
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where,s = jw andw is a real number.
In this definition,f0(s) is nominal transfer function andv(s) is uncertainty in the form

of proper transfer function.

Definition 2: As shown in Figure 1, a closed loop system with negative feedback is stable
iff for each f(s) in classC(f0(s), v(s)), there exists a controllerc(s). An inequality is
proposed in Kimura (1984), for achievement of this purpose.

|v(jw)c(jw)| < |1 + f0(jw)c(jw)|, ∀w (25)

Later using equation (25), equality is defined as

1 + f0(jw)c(jw) =
c(jw)

µ(jw)
. (26)

Hence

µ(s) =
c(s)

1 + f0(s)c(s)
(27)

and controllerc(s) can be written as

c(s) =
µ(s)

1− f0(s)µ(s)
(28)

Figure 1 Controller with plant

 ! !
 

!

 !" !

5 The Nevalinna-Pick theory

In complex analysis, interpolation of data utilises holomorphic function (Ball and Trent,
1998). Later is obtained by Nevanlinna-Pick theory (NPT) (Appendix B). It is also used
in circuit theory Delsarte et al. (1981), signal processingDewilde et al. (1978) and
approximation problems Kimura (1983).

Definition 3: Consider an analytic functionφ(s) with Re(s) ≥ 0 satisfying the inequality

|φ(jw)| ≤ 1, ∀w (29)

The inequality (29) is bounded real (BR). But if

|φ(jw)| < 1, ∀w (30)
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then it is called strongly bounded real (SBR). Now, interpolation problem is formulated for
SBR or BR functions. These are called Nevanlinna-Pick problems.

Let us say, there are2n complex numbersχi, δi, i = 1, 2, ..., n, are following the
inequality as given by

Re[χi] > 0, |δi| < 1, i = 1, 2, ..., n (31)

NPT is used to determineφ(s), which fulfills the following relation

φ(χi) = δi, i = 1, 2, .., n (32)

It is accomplished by forming Fenyves arrayδi,j as given by

δi,1 = δi, i = 1, 2, ..., n

δi,j+1 =
(χi + χ̄j)(δi,j − δj,j)

(χi − χj)(1− δi,j δ̄j,j)
1 ≤ j ≤ i− 1 ≤ n− 1

ρj = δj,j (33)

Thus,φ(s) is solved by iterating linear fractional transformations as

φj(s) =
(s− χj)φj+1(s) + ρj(s+ χ̄j)

s+ χ̄j + ρ̄j(s− χj)φj+1(s)
, j = n, n− 1, ..., 1, (34)

φ(s) = φ1(s) (35)

In (34),φn+1(s) is SBR function. Initialisation and termination conditions are given as

φ(0) = δ0

φ(∞) = δn+1 (36)

where

|δ0| < 1, |δn+1| < 1 (37)

6 The condition of robust stabilisability

Let, f0 be annth order nominal transfer function and it containsχ1, χ2, ..., χk wherek is
the number of unstable poles. Blaschke product Kimura (1984) for these unstable poles can
be written as follows

B(s) =
(χ1 − s)...(χk − s)

(χ̄1 + s)...(χ̄k + s)
(38)

It will satisfy the condition as written by

|B(jw)| = 1, ∀w (39)
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Suppose

f̃0(s) = f0B(s)

δi =
vm(χi)

f̃(χi)
(40)

Applying equations (34), (35), (38) and (40),µ(s) can be formulated as follows

µ(s) =
B(s)

vm(s)
φ(s) (41)

wherevm(s) is an arbitrary SBR function. Controllerc(s) is designed using equations (28)
and (41).

7 Example

Let an unstable interval transfer function,

TUF =
[2, 3]s3 + [19.5, 21.5]s2 + [32.5, 34.5]s+ [15, 16]

[2, 3]s4 + [15.7, 22.2]s3 + [26.9, 61.2]s2 + [4.3, 71.9]s+ [−9.7, 30.1]

=
s+ [1, 1]

s+ [−0.45, 1.4]
×

[2, 3]s2 + [317.5, 18.5]s+ [15, 16]

[2, 3]s3 + [17, 18]s2 + [35, 36]s+ [20.5, 21.5]

= TUF1
× TSHF

(42)

whereTUF1
stands for unstable interval transfer function andTSHF stands for stable high

order interval transfer function.
In proposed technique,TSHF , i.e., high order system is converted into stable ROM

using technique proposed in Singh et al. (2017). Then, controller is designed for the product
of TUF1

andTSHF .
Using equations (8)–(24),TSRM , i.e., ROM ofTSHF can be written as

TSRM =
[0.44, 0.52]

s+ [0.62, 0.67]
(43)

So, from equations (42) and (43), it is obtained

TURM = TUF1 × TSRM

=
s+ [1, 1]

s+ [−0.45, 1.4]
×

[0.44, 0.52]

s+ [0.62, 0.67]
(44)

Hence

TURM =
([0.44, 0.52])(s+ 1)

s2 + [0.17, 2.07]s+ [−0.30, 0.94]
(45)
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Now, Kharitonov polynomials forTURM can be written as

f01 =
[0.44, 0.52](s+ 1)

(s+ 0.64)(s− 0.47)
(46)

f02 =
[0.44, 0.52](s+ 1)

(s+ 2.21)(s− 0.14)
(47)

f03 =
[0.44, 0.52](s+ 1)

(s+ 1.40)(s+ 0.67)
(48)

and

f02 =
[0.44, 0.52](s+ 1)

(s+ 0.09− 0.97i)(s+ 0.09 + 0.97i)
(49)

Using the proposed algorithm, controllers are designed forunstable systems around a certain
uncertainty of first two unstable rational systems (i.e.,f01andf02 ). Remaining systems (i.e.,
f03andf04) are stable. So, there is no need to design controller for such systems. Leaving
the interval coefficient, the step wise controller designing procedure forf01 is given as

As provided in equation (46), suppose

b1 = 1

χ = 0.47

b2 = 0.64 (50)

Using

f0 =
(s+ b1)

(s− χ) ∗ (s+ b2)
(51)

Applying equation (38), it is obtained

B =
χ− s

χ+ s

=
0.47− s

0.47 + s
(52)

Using equations (52), (40) is given

f̃0 = B ∗ f0 (53)

Let, the SBR function,vm, is given by

vm =
b

(s+ 1)
(54)
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and applying equation (40), it is obtained

δ0.471 =
f0.47
0

v0.47m

δ0.471 =
−(b(s+ 16

25 )(s+
47
100 ))

(s+ 1)2
(55)

Puttingχ = 0.47 in equation (55), it is obtained

δ0.471 ≈ −0.48b

Using the inequality of equation (37), it can be written as

|δ0.471 | < 1 (56)

Hence

|b| < 2.07 (57)

and from equation (56), it is obtained

k = 2.07 (58)

Using equations (33), (34), (35) and (41), it is obtained

p1 =
b

k

φ2 =
b ∗ s

k ∗ s+ k

φ1 =
((s− b1) ∗ φ2 + p1 ∗ (s+ b2))

((s+ b2) + p1 ∗ (s− b2) ∗ φ2)

µ1 = B ∗
φ1

vm
(59)

Finally, using equation (28), controller for the classC(f01, vm)of unstable transfer functions
is given by

c1 =
µ1

1− f01 ∗ µ1
(60)

c1 =
−125.26s5 − 209.18s4 − 86.3s3 + 11.43s2 + 22.68s+ 8.85

[(30.24b2 + 254.96)s4 + (19.35b2 + 647.79)s3 + (591.58− 66.80b2)s2

+(246.52− 4.27b2)s+ 477.74
]
, (61)

where0 < b < 2.07.
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Applying same procedure as above, the controller for the classC(f02 , vm) is given as

c2 =
(−267.23s5 − 954.01s4 −−899.39s3 − 209.99s2 + 8.41s+ 5.78)

[(67.57b2 + 531.13)s4 + (159.51b2 + 1589.09)s3 + (1378.75− 1.33b2)s2

+(350.93− 2.93b2)s+ 30.14
]
, (62)

where0 < b < 1.98.
After calculating the range ofb for each unstable nominal transfer function of

equation (45), a random value ofb from each range is selected. Corresponding to these
values, unstable transfer function and controller for eachclass is derived, after that using
these two of the same class, closed loop transfer function for each class is calculated, as
given in Table 2.

Table 2 Information regarding step and impulse responses

Step and
impulse responses
of corresponding

Unstable transfer- Random closed loop
function Corresponding Range value of system i.e.

S. no. f = f0i +
b

s+1
; controller of b b

cf

1+cf
in Figure 2

1. f = f01 + b
s+1

c1 0 < b < 2.07 1.1 F11 and F12
2. f = f02 + b

s+1
c1 0 < b < 1.98 1.2 F21 and F22

Figure 2 Controller with plant (see online version for colours)
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Figure 3 Impulse response of unstable system using technique proposed by Matuš and Prokop
(2016) (see online version for colours)

Impulse response of unstable system using technique proposed by [8].

Further, step responses (i.e., F11 and F21) and impulse responses (i.e., F12 and F22) of these
closed loop transfer functions are plotted in Figure 2. It isclear from this figure that step
response of each system reaches to a steady state value and impulse response diminishes
to zero which is necessary and sufficient condition for stability, i.e., bounded output for
bounded input (BIBO).

Simultaneously, impulse responses of the systems (i.e., F12 and F22) with respective
controllers proposed by Matuš and Prokop (2016) are provided in Figure 3. It is clear from
Figures 2 and 3 that time taken by the output to reach steady state value by the proposed
technique is less than Matuš and Prokop (2016). Also, the impulse responses given in
Figure 3 contain overshoots which are absent in Figure 2. It shows effectiveness of the
controller designed by the proposed method over Matuš and Prokop (2016).

8 Conclusion

In this article, a process of controller design by model order reduction of interval system is
discussed. In this process, high order interval system is converted into ROM using Routh
approximants and time moment matching technique followed by controller design for ROM
using Kharitonov theorem and Nevalinna-Pick theory. Kharitonov theorem is applied to
convert interval system into equivalent rational systems.Controllers are designed around
these rational systems in a certain range of uncertainty using Nevanlinna-Pick theory. It
shows that Nevanlinna-Pick theory can also be used for robust stability. Robust stability and
condition for robust stability of uncertain system are discussed. At the last, an illustrative
example of fourth order unstable interval system is discussed. Results prove the usefulness
of applied method.
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Appendix A

Consider annth order interval system:

Tf =
[n−

n−1, n
+
n−1]s

n−1 + [n−

n−2, n
+
n−2]s

n−2 + · · ·+ [n−

0 , n
+
0 ]

[d−n , d
+
n ]sn + [d−n−1, d

+
n−1]s

n−1 + · · ·+ [d−0 , d
+
0 ]

(A.1)
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The denominator ofTf is given by

Dn = [d−n , d
+
n ]s

n + [d−n−1, d
+
n−1]s

n−1 + · · ·+ [d−0 , d
+
0 ] (A.2)

Let, factorization of (64) is given by

Dn = (s+ [α−

0 , α
+
0 ])([β

−

n−1, β
+
n−1]s

n + [β−

n−2, β
+
n−2]s

n−2 + ·+ [β−

0 , [β+
0 ]) (A.3)

If we consider the coefficient ofs0 from equations (64) and (65), then

[α−

0 , α
+
0 ]× [β−

0 , β+
0 ] = [d−0 , d

+
0 ] (A.4)

In equation (66), there are four unknowns (i.e.,α−

0 , α+
0 , β−

0 andβ+
0 ) and two equations as

given by

α−

0 β
−

0 = d−0

α+
0 β

+
0 = d+0 (A.5)

So, there will be many solutions of (67). From above analysis, it is clear that factorization
of an interval polynomial is not unique.

Appendix B

The Nevanlinna- Pick theorem given as: Let,w1, w2 · · · , wn, z1, z2, . . . , zn ∈ D. There
exists a holomorphic functionf : D → D such thatf(wi) = zi (whereD is unit disc in
complex plane whose centre is at origin), iff the Pick matrix

( 1− z̄izj

1− w̄iwj

)n

i,j=1

is positive semi-definite.




