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Abstract: The task of parameter initialisation of an ant colony optimisation 
(ACO) has gained much attention in recent years. For the systems using  
ACO-based control, the technique used was generally hit and trial. However, in 
order to be able to obtain better and faster response, along with better 
convergence, for control of fractional order (FO) systems, it became imperative 
to formulate some approach. In this paper, we have used genetic algorithm 
(GA) to initialise the ACO parameters for a systematic design of ACO-based 
fractional order controllers. The GA-based ACO fractional order PID controller 
is developed by minimisation of a multi-objective function using a nested GA 
technique. The effectiveness of the method used is verified using seven FO 
systems. The results are compared with the controllers based on ACO and GA. 
The proposed GA-based ACO controller yields reasonably better performance 
as compare to the existing techniques with a slight weakness of higher 
computational complexity. This limitation can be easily overcome by use of 
high performance machines. 

Keywords: fractional order system; ant colony optimisation; ACO; genetic 
algorithm; GA-based ACO. 
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1 Introduction 

One of the most reliable controller for dynamical systems is the proportional-integral-
derivative. Recently, researchers have toyed with several soft computing approaches that 
were earlier used in the conventional PID control to increase effectiveness and reliability 
of PID controllers, e.g., neural networks have been used for online nonlinear PID 
controller design in Kumar et al. (2016). Rastogi et al. (2011) proposed a fuzzy logic PID 
controller for stabilising electronic circuits. The fuzzy PID controller is compared with a 
Zeigler-Nichols (ZN) tuning-based conventional PID controller. Jayachitra and Vinodha 
(2014), propose a continuous stirred tank reactor (CSTR) process controller wherein 
genetic algorithm (GA) has been used GA for adjusting the PID control parameters. 

Fractional order (FO) PID controller design attempts to tune two additional FO 
parameters which are additional to the three parameters used in the conventional PID 
controller making FO control more complex but more effective. Generalisation of PID 
control to fractional order systems gives fract order PID (FOPID) control (Vinagre and 
Monje, 2012). Fract order PID control is nearer to actual systems as all physical systems 
are inherently fractional in reality. Thus, fractional calculus is used to model a system 
more precisely. Fract order PID controller’s transfer function (PIλDμ) is: 
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     (1) 

In equation (1), we notice that λ and μ are the two other parameters in the fract order 
setup as compared to just three in the PID control. This makes the controller design more 
versatile than conventional PID one. 

Several authors attempted to incorporate evolutionary algorithms in FOPID, e.g., a 
fractional fuzzy FOFPID controller is envisaged in Mishra et al. (2015), for distillation 
column. Basu et al. (2017) designed a FOPID controller for heating furnace using 
different optimisation techniques whereas, Zhang and Li (2011) proposed genetic 
algorithm-based tuning of fractional-order PID controller. Noureddine et al. (2013) 
deliberated tuning of fuzzy fractional order PID sliding-mode controller using PSO 
algorithm for non-linear systems. Zukhri and Paputungan (2013) suggested hybrid 
optimisation algorithm based on genetic algorithm and ant colony optimisation. Presented 
controller belongs to the Takagi Sugeno type with non-integer values of differentiation 
and integration operators on a fuzzy setup. In yet another application the authors of 
Ismayil et al. (2015), automated generation control of thermal power plants with genetic 
algorithm assisted fract order PID (GAFOPID) has been implemented. The controller 
employs GA and fuzzy logic for finding parameters of a PI controller. Ramezanian and 
Balochian (2013) propose optimisation based on particle swarms for adjusting the 
parameters of a PID controller for application on automatic voltage regulator system. The 
authors compare PSO-FOPID controller to FOPID/PID control and show that their 
control formalism has superior robustness and model uncertainties handling capability. 
Singh et al. (2016) propose an ant colony assisted fractional fuzzy PID approach and give 
simulation results on several fract-order plants. In yet another proposal, a GA assisted 
ACO control has been depicted in Suribabu and Chiranjeevi (2016) for optimising 
dynamical characteristics of automated voltage regulation systems. 

Researchers proposed GA (Zalzala and Fleming, 1997) as an evolutionary technique 
inspired by Darwinian theory with three main tenets: reproduction, crossover and 
mutation. Over the years, GA has proven its mettle by providing reliable solutions to a 
wide array of problems. Another conspicuous evolutionary approach is the ANT colony 
algorithm developed in Dorigo et al. (1999) which is motivated by the approach taken by 
ants in locating a food source and optimising the path to it. The ants do this by releasing 
and reinforcing a pheromone along the food path. Most optimal path is repeatedly 
sprayed over by other ants till a more optimal one is found (if any). The algorithm that 
emulates this ant behaviour is called ant colony optimisation (ACO). In our current work, 
we have attempted to combine these two approaches together, i.e., GA is used to tune the 
ACO controller. The novelty of the method lies in the fact that: 

1 the initial parameters of ACO have not been chosen randomly; GA has been used to 
tune these parameters 

2 the optimisation approach used in the paper is a multi-objective optimisation, i.e., 
instead of optimising only one parameter, four time-domain specification parameters 
are optimised simultaneously. 

Choice of initial parameters of ACO algorithm, i.e., ,  and ρ (to be explained in  
Section 3), apriori is a critical task. Incorrect choice increases the computational time 
unnecessarily. Tuning these parameters using GA reduced both time and complexity of 
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the task. Also, by using the multi-objective optimisation, better results were obtained as 
compared to the GA and ACO algorithm results used individually. This motivated us to 
use the proposed approach. 

We give a concise overview of the GA and ACO techniques in next two sections, 
respectively. A detail of our GA tuned ANT controller approach along with the 
discussion of the multi-objective function is considered in Section 4. In Section 5, the 
simulation results of the GA-based ACO approach applied to the seven different  
fract-order plants are presented and their comparison with ACO and GA-based FOPID 
controllers also deliberated. Conclusions are given in Section 6. 

2 Genetic algorithm 

It is an algorithm with roots in the evolutionary biology and genetics. In other words, it 
mimics the way humans and other species have evolved into better and fitter ones over 
time. Starting point is a set of candidate solutions to a problem at hand which are 
completely random. From this random raw set of individuals called population, fitter set 
of individuals evolve. The main criteria for generating better population is an evaluation 
function called the fitness function. Main processes involved in producing better set of 
individuals are selection, reproduction, crossover and mutation. This is similar to 
evolution of species on this planet over time. Fitness function is used to evaluate quality 
of a candidate solution to a problem and is primarily problem dependent. At each stage, 
the off springs are evaluated vis. a vis. parents to see whether we get a better population 
set. It is a stochastic approach meaning that there holds no guarantee that only the highest 
scoring individuals will form the next population; some low scoring candidates also form 
part of the solution set. This procedure helps maintain diversity in the resulting solution 
and avoids solution getting stuck in local minima. In literature, we find roulette wheel 
and tournament selection as the two primary methods for selecting next population set. 

Figure 1 GA procedure in nutshell 

  

GA terminates on two counts: when a satisfactory level of performance is reached in 
terms of a fitness value or a specified maximum number of generations have been 
produced. The algorithm acclimatises with the environment by producing an alternate set 
of population by means of reproduction. Fitter set of off springs serve as parents for the 
next generation. When a specified number of iterations have taken place, mutation takes 
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place. Mutation seeks to bring in genetic material that may have been left out. Figure 1 
gives a pictorial presentation of the GA process. 

3 Ant colony approach 

Herein, we take a snapshot of the ant colony algorithm presented in Dorigo et al. (1999) 
and discuss the design of a FOPID controller via the ACO technique, i.e., varying the ant 
variables ,  and ρ. ACO is an algorithm which belongs to the umbrella techniques 
collectively called the meta heuristic search techniques. The algorithm searches for the 
best path between the sets of nodes and mimics the ants. The ants have a unique way of 
identifying the most economical path from their origin to the source. Although individual 
ants do not have much intelligence, yet their collective effort leads them to the most 
optimal path to the food. 

Ants search for food in a completely random manner, initially. But this randomness 
changes when a food source is identified by the ant. This particular ant then takes a small 
bit of food back to the colony and while doing so sprays a pheromone on the path it takes 
to the colony. Other ants lock on to this pheromone trail and also carry food from the 
source to the colony and in doing so reinforce the pheromone trail by the first ant. This 
reinforcement increases the pheromone strength along the path. These pheromones 
gradually evaporate over time so a particular path needs to be reinforced time and again 
to remain a viable one. Most of the time ants stick to the path marked by pheromone but 
sometimes an ant takes a somewhat different path or an exploratory one. This facilitates 
search of other optimal path by other ants. If the new path is better than the previous one 
the earlier path is discarded and the new one is reinforced by the pheromones. 

ACO technique tries to mimic this ant behaviour by attempting to optimise a cost 
function. In our current work, we have employed ACO technique to optimise a multiple 
object function which includes time domain specifications and the intergral time absolute 
error (ITAE) index. The ACO variables ,  and ρ chart out the efficiency of the ACO 
approach.  and  are the parameters defined by the user while ρ(ro) is evaporation rate 
of the pheromone. We detail our implementation of the ACO approach for FO plant 
control: 

1 Initialising the search 

 A nodal matrix containing possible parameters of KP, KD, KI, lb(lambda) and mu is 
created wherein the values are uniformly distributed. Next, a matrix specified node 
to node transition probabilities is created and has the size same as the nodal matrix. 
The probability of visiting a particular node is same, initially. Second step is  
creation of a pheromone matrix (Dorigo et al., 1999) which lists accumulation and 
evaporation of pheromone concentration. In addition, an ant matrix is also created to 
count the nodes traversed by the mth ant after every iteration. 

2 Probability matrix update 

 The transition probability, i.e., the probability of transition of ant from node p to q is 
calculated by 
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 where τmn = pheromone parameter; ηmn = (1 / dmn) is a heuristic parameter; dmn is the 
distance of node m from node n. τmn is based on the ant’s behaviour that have got 
good solution. The decision of subsequent ants is characterised by parameters  ≥ 0 
and  ≥ 0 and depends on pheromone strength and heuristic values. The path taken 
by an ant A is given by TA. Pheromone strength released on a particular path is: 

min

if ,

0 else             

A
A Apa

L
p q T

τ L


  



 (3) 

 Best solution and objective function generated by ants is given by LA and Lmin, 
respectively. The probability matrix update and the value of A

mnτ  is redefined after 
every iteration and reflects the route taken by the mth ant. Strength of pheromone is 
updated as: 

1 topj j

bottom

ξf
τ τ

f
     (4) 

 Evaporation pheromone rate is updated as: 

1

( ) ( 1) ( )
N

A
mn mn mn

A

τ t ρτ t τ t


     (5) 

 Number of ants are denoted by N and evaporation rate by ρ (0 < ρ < 1). 

4 GA-based ant technique 

In this work, we attempt to use GA to optimally tune the ACO algorithm parameters for 
designing the FOPID controllers. ACO algorithm’s performance depends on these ant 
parameters. In literature, we find no mechanism for initialising the ACO parameters, they 
are set randomly. This work is aimed at removing this randomised approach to initial 
ANT parameter selection. We use GA as the optimising technique over the population of 
possible ANT parameters ,  and ρ. Better individuals are selected in GA using an 
evaluative function as outlined in the previous section. This is done by using the 
conventional GA processes of selection, crossover and mutation. After a specific number 
of GA iterations, we get optimal initial ACO parameters. 

1 Initialise: First step is generation of a random population relating to values of ACO 
parameters. 

2 Calculating cost functions: Next step involves calculation of cost function with these 
set of ACO algorithm parameters values extracted from the population. 
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3 GA processes of selection, crossover, mutation: Based on the cost function values, 
we extract best four ,  and ρ values. GA is employed wherein rest of the 
population is mated with the random population. GA is done with parameters: No. of 
chromosomes = 12, size of population is 8, mutation rate of 10% and iteration count 
is 50. 

4 Looping: We repeat the steps 2 through 3 for a fixed iteration count. 

5 Result lock: Once the best set of ACO parameters are attained, the iterations are 
terminated. 

4.1 Multi-objective functional 

Generally, a effectiveness of a controller is validated using the cost function intergral 
square of error (ISE) or ITAE. A recent trend is to club one or more of such indices 
termed as a multi-objective functional mentioned in Meng and Xue (2009). This 
performance measure facilitates simultaneous satisfaction of a number of performance 
parameters. For FOPID controller, we are concerned with optimisation of some of these 
performance parameters. In this work, we design a multi-objective functional which 
forms a weighted sum of these indices: 

1 1 2 2 3 3 4 4C w I w I w I w I     (6) 

where I1 refers to settling time, I2 refers to rise time, I3 refers to peak overshoot and I4 is 
ITAE with being weights relating to the performance index. 

5 Results 

An 8 GB RAM Intel Core i5 processor with speed of 1.6 GHz has been used for 
simulating our GA tuned ANT based FOPID controller. The proposed controller 
performance is perused on seven unrelated fract-order systems and compared with both 
the ant colony and GA approaches dealt one at a time. The parameters (GA) are: 
population number = 8, number of iterations (limiting) = 50; chromosome number = 12; 
percentage of mutation = 10%. FOPID parameters are constrained with values of KP, Ki 
and Kd in the range [0, 10); and λ and μ in the range [0.1). 

GA based ACO approach is simulated with the parameters as follows: number of 
iterations for GA = 5, iterations for ACO = 50; ants = 10; nodes = 100 (parameter tuned 
on100 × 5 nodal matrix). ACO parameters being 0 ≤  < 2; 0 ≤  < 1; 0 ≤ ρ < 2. The 
systems on which we test our GA-based ACO controllers are: 

1 2.3 0.9

5
Sys.1: ( )

1.3 1.25
G s

x x


 
 (7) 

2 2.2 0.9

1
Sys. 2 : ( )

0.8 0.5 1
G x

x x


 
 (8) 

3 3.2 2.5 0.7

1
Sys. 3 : ( )

10 185 288 1

x
G x

x x x




  
 (9) 
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0.5

4 3.3 2.6 1.9 1.4

5 2
Sys. 4 : ( )

3.1 2.89 2.5 1.2

x
G x

x x x x




   
 (10) 

5 2.2 1.4 0.9

1
Sys. 5 : ( )

3.2 2.4 1
G x

x x x


  
 (11) 

6 2.8 1.5

1
Sys. 6 : ( )

3.6 1
G x

x x


 
 (12) 

7 1.6 1.2

1
Sys. 7 : ( )

8.8 1
G x

x x


 
 (13) 

The time response of various controllers for step input for plant 1 is depicted in Figure 2. 
We notice that our proposed approach yields best time domain response. Another 
advantage is better ITAE value of 2.6697 (Table 1) achieved by our GA based ACO 
controller in comparison with other approaches. 

Figure 2 Time domain output for step input of Sys. 1: G A, A C O, GA-ACO 
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Figure 3 Time domain output for step input of Sys. 2: G A, A C O, GA-ACO 
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Figure 4 Time domain output for step input of Sys. 3: G A, A C O, GA-ACO 
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Figure 5 Time domain output for step input of Sys. 4: G A, A C O, GA-ACO 
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Figure 6 Time domain output for step input of Sys. 5: G A, A C O, GA-ACO 
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Figure 7 Time domain output for step input of Sys. 6: G A, A C O, GA-ACO 
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Figure 8 Time domain output for step input of Sys. 7: G A, A C O, GA-ACO 
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To evaluate efficacy of the approach used in the paper, simulations are performed on six 
other fract order systems. The parameters for simulating the plants are listed in Table 1. 
From the simulation results depicted in Figure 3, we see that our GA tunes ACO 
approach achieves best time response specifications against other techniques. This trend 
of superior results is repeated in case of five other plants as well (Figure 4 to Figure 8). 

A comparison of time response parameters for all the plants is listed in Table 1. The 
GA-based ACO technique achieves best transient as well as steady state parameters. This 
can be judged by looking at the parameter values listed in Table 1. 
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Table 1 Time response comparison of GA-based ACO with other FOPID controllers 

Technique FOPID Parameters Response ITAE 

Sys. 1 

Genetic algorithm PC = 1.76, IC = 8.52, DC = 3.64; 
lbd = 0.64, mu = 0.96 

r-t = 0.224, s-t = 1.849, 
Overshoot% = 11.15 

94.313 

Ant colony optim. PC = 6.8, I C =9.57, DC = 9.26; 
lbd = 0.9098, mu = 0.9752 

r-t = 0.158, s-t = 0.517, 
Overshoot% = 4.408 

3.634 

Proposed approach al = 1.03, bt = 0.01, ro = 0.18  
PC = 0.07, IC = 8.51, DC = 9.81; 
lbd = 0.7136, mu = 0.9881 

r-t = 0.162, s-t = 0.372, 
Overshoot% = 2.240  

2.669 

Sys. 2 

Genetic algorithm PC = 0.87, IC = 5.59, DC = 4.71; 
lbd = 0.91, mu = 0.83 

r-t = 0.439, s-t = 3.379, 
Overshoot% = 9.504  

9.379 

Ant colony optim. PC = 1.53, IC = 5.75, DC = 5.3 
lbd = 0.9871, mu = 0.7611 

r-t = 0.404, s-t = 3.115, 
Overshoot% = 13.003 

7.042 

Proposed approach al = 0.69, bt = 0.17, ro = 0.93;  
PC = 1.41, IC = 7.41, DC = 6.92; 
lbd = 0.9732, mu = 0.91676 

r-t = 0.356, s-t = 2.690, 
Overshoot% = 4.447 

6.271 

Sys. 3 

Genetic algorithm PC = 8.070, IC = 4.830,  
DC = 4.750 lbd = 0.870,  
mu = 0.1500 

r-t = 17.854,  
s-t = 80.286, 
Overshoot% = 21.468 

8376.82 

Ant colony optim. PC = 8.26, IC = 9.76, DC = 8.57 
lbd = 0.6422, mu = 0.0397 

r-t = 17.996,  
s-t = 92.172, 
Overshoot% = 7.502 

2464.5 

 Proposed approach  al = 1.71, bt = 0.03, ro = 1.71  
PC = 9.91, IC = 8.34, DC = 6.7 
lbd = 0.784, mu = 0.814  

r-t = 14.895,  
s-t = 69.542, 
Overshoot% = 17.161 

2408.2 

Sys. 4 

Genetic algorithm PC = 1.01, IC = 6.21, DC = 4.05 
lbd = 0.59, mu = 0.99 

r-t = 0.395, s-t = 4.994, 
Overshoot% = 14.693  

282.7 

Ant colony optim. PC = 5.46, IC = 4.6, DC = 6.85 
lbd = 0.9682, mu = 0.94351 

r-t = 0.293, s-t = 1.597, 
Overshoot% = 11.897  

19.74 

Proposed approach al = 0.58 bt = 0.02 ro = 0.02  
PC = 5.78, IC = 5.78, DC = 9.26 
lbd = 0.9098, mu = 0.97523  

r-t = 0.255, s-t = 0.995, 
Overshoot% = 8.611  

17.087 

Sys. 5 

Genetic algorithm PC = 2.55, IC = 5.75, DC = 6.39 
lbd = 0.67, mu = 0.54 

r-t = 0.870, s-t = 3.507, 
Overshoot% = 4.697 

44.222 

Ant colony optim. PC = 9.60, IC = 6.45, DC = 9.64 
lbd = 0.856, mu = 0.4202 

r-t = 0.518, s-t = 1.763, 
Overshoot% = 9.818  

42.646 

Proposed approach al = 1.3, bt = 0.34, ro = 1.86  
PC = 9.17, IC = 3.72, DC = 7.84 
lbd = 0.963, mu = 0.609 

r-t = 0.655, s-t = 0.971, 
Overshoot% = 0.543 

11.983 

Notes: Notation: PC = KP, IC = KI, DC = KD. 
r-t, s-t, Overshoot% - specifications of rise time, settling time, percentage overshoot. 
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Table 1 Time response comparison of GA based ACO with other FOPID controllers 
(continued) 

Technique FOPID Parameters Response ITAE 

Sys. 6 

Genetic algorithm PC = 0.2302, IC = 9.4394,  
DC = 6.5566 lbd = 0.49610,  
mu = 0.6627 

r-t = 0.83, s-t = 6.5, 
Overshoot% = 28.68  

74.594 

Ant colony optim. PC = 1.97200, IC = 7.3974,  
DC = 6.5566 lbd = 0.8512 , mu = 
0.6151  

r-t = 0.795, s-t = 6.1, 
PO% = 28.00  

21.680 

Proposed approach al = 0.010, bt = 0.010, ro = 0.010 
PC = 5.9159, IC = 4.7748,  
DC = 9.0390 lbd = 0.9424,  
mu = 0.9484  

r-t = 0.690, s-t = 6.00, 
Overshoot% = 9.91 

11.289 

Sys. 7 

Genetic algorithm PC = 7.9900, IC = 4.8300, DC = 
3.4700 lbd = 0.4700, mu = 0.7900 

r-t = 0.784, s-t = 4.532, 
Overshoot% = 8.262 

15.476 

Ant colony optim. PC = 4.7347, IC = 6.5766, DC = 
7.6977 lbd = 0.1866 , mu = 
0.0437  

r-t = 0.547, s-t = 2.528, 
Overshoot% = 10.02 

9.063 

Proposed approach al = 0.8100, bt = 0.3700, ro = 
1.7200 PC = 5.9159, IC = 4.7748, 
DC = 9.0390 lbd = 0.9424, mu = 
0.9484  

r-t = 0.703, s-t = 1.121, 
Overshoot% = 0.783 

5.413 

Notes: Notation: PC = KP, IC = KI, DC = KD. 
r-t, s-t, Overshoot% - specifications of rise time, settling time, percentage overshoot. 

From Table 1, it is observed that: 

1 In Sys. 1, the peak overshoot has reduced considerably and the settling time has also 
reduced. However, the rise time is comparable with the ACO approach. 

2 In Sys. 2, all the three parameters have decreased considerably when the proposed 
approach is applied. 

3 In Sys. 3, though the peak overshoot is not the lowest, but settling and rise times are 
significantly less. 

4 In Sys. 4, again the proposed approach yields best results. 

5 In Sys. 5, the peak overshoot has diminished substantially, whereas the other two 
parameters have also decreased. 

6 In Sys. 6, again there is a dramatic decrease in peak overshoot, whereas, the settling 
and rise times are also comparable. 

7 In Sys. 7, there is a drastic reduction in peak overshoot, but at the compromise of rise 
time, although the settling times for the three methods are comparable. 

Another very important performance measure is the computational time comparison of 
controllers. We give computational complexity of various controllers in Table 2. As 
expected, we see that our GA-based ACO has highest computational time. This result 
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obtained is as expected based on our technique wherein GA is nested with ACO. Even 
then our approach holds promise: 

a it is a futuristic approach as it does away with the trial and error procedure adopted 
in the ANT colony approach 

b has the best transient response amongst all the controllers 

c produces best steady state performance as well. In today’s age of fast processing 
computers which are available at cheap prices, the increased computational burden 
would not pose a major hurdle. 

Table 2 Controller comparison: computational complexity  

Technique Computation time (sec) 

GA 5.32 

ACO 7.92 

GA based ACO 20.53 

6 Conclusions 

GA based ACO technique as outlined in this work is a research leap in the designing of 
ANT colony based controller design philosophy. We have removed the trial and error 
procedure used so far in the ACO technique with a mathematically oriented GA based 
optimisation. The GA initialised ACO parameters lead to faster convergence to target 
values as evidenced by superior transient response and steady state response of our 
proposed GA tunes ACO approach. To showcase feasibility of our approach we 
simulated the technique on seven different fract order systems and compared its 
performance against two other contemporary evolutionary algorithm based approaches. 
One small though not negligible drawback of our technique is relatively large 
computational complexity. 
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