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Abstract: The aim of the study is to design and implement decentralised  
PI controller for a lab scale distillation column based on the frequency 
specifications. Designing an effective PI controller for an MIMO process is a 
challenging task because of the loop interaction and system with dead time. In 
order to eliminate these interactions between the control loops, an ideal 
decoupling technique is implemented and first order plus dead time model is 
obtained for each decoupled subsystems. By plotting the boundary locus for 
each subsystems based on the desired gain and phase margin in (kp, ki) plane a 
wide range of PI values are obtained. Also, the performance measurement 
calculations were compared and tabulated for various values of kp and ki with 
the boundary locus. In this present research the pressure and temperature near 
the bottom of the column is considered. It is also shown that the system become 
unstable when the value of PI controller is selected outside the boundary locus. 
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margin. 
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1 Introduction 

In the work on tuning of PI, PID controllers has been extensive since these types of 
controllers have been widely used in industries for several decades (Tan, 2005). Most of 
the processes in industry are multi-input and multi-output systems (MIMO). Due to the 
interactions in control loops, MIMO system control is quite complex compared to SISO 
systems (Tan et al., 2006). MIMO systems controller can be either centralised or 
decentralised. A better method is the decentralised PI controller with decoupler, where a 
decoupler is designed to deal with interactions and then a set of values (kp and ki) are 
designed using the locus of the boundary of stability. The main reason for this popularity 
is that PI controllers are frequently effective and easy to implement. Decentralised PI 
control is one of the most common control systems in the chemical and process industries 
for the interaction of multiple-input MIMO plants (Tavakoli et al., 2006). Margins of gain 
and phase served as important robustness measures and also served as a performance 
measure (Hamamci and Tan, 2016). The notation of gain and phase margin can be 
generalised for MIMO systems using unique values of the loop transfer function matrix. 
In this current research on a pilot plant binary distillation column, an ideal decoupler plus 
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decentralised PI controller based on the frequency specification is simulated and 
implemented. 

The distillation column is widely used for separating chemical components into more 
or less pure product streams in the chemical and petroleum industries. This separation is 
based on differences between various chemical components in volatilities. Components 
are removed from the top of the column in a distillation column the more volatile or 
lighter, and the less volatile or heavier components are removed from the lower part of 
the column. A mixture of isopropyl alcohol and water in the ratio of 30% and 70% for 
distillation is considered in the present research. The reflux flow rate (L) is measured as 
the LPH and the reboiler power rate (Q) is measured as the manipulated variable (MV) in 
KW, whereas the controlled variable (PV) is the pressure (PB) and temperature in tray 1 
(T1). The article uses MATLAB/Simulink software to present control algorithm 
simulation with and without load disturbance. The control algorithm is further validated 
on the PC-based Instrumentation Lab, Department of ICE, MIT, Manipal experimental 
setup. Further the performance indices such as integral absolute error (IAE), integral 
square error (ISE), integral time absolute error (ITAE) and integral square time error 
(ISTE) are tabulated for both servo and regulatory. 

Section 2 provides a brief summary of the method of decoupler design, while  
Section 3 outlines the design of stabilising PI controller using the method of boundary 
locus. Section 4 details the column pressure mathematical modelling. The results of the 
PI controller’s simulation and implementation based on the locus of the stability 
boundary are presented. The performance of the closed loop was analysed and compared 
within the admissible set of PI values for different PI controller values is presented in 
Section 5, followed by the conclusions in Section 6. 

2 Decoupler design 

One of the popular approaches to eliminate or minimise the control loop interactions is 
designing a decoupler is suggested by Gagnon et al. (1998). Decoupler decomposes a 
MIMO process into independent single loop sub-systems. Figure 1 shows the block 
diagram of this structure (Vijula and Devarajan, 2014). Considering the MIMO processes 
is given as: 
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have no RHP poles and the G(s) diagonal elements have no RHP zeros then the matrix of 
the decoupler is as follows: 
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The overall open loop transfer function of process with decoupler is given by: 
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( ) ( ) ( )Q s G s D s   

Once the Q(s) diagonal elements, i.e., q11(s) and q22(s) are approximated in the first order 
plus dead time (FOPDT) model is given as (Hu et al., 2011): 

( )
1

dτ s
p

nn
K e

q s
Ts






 (3) 

where Kp, τd and T are process gain, delay time and time constant respectively. 

Figure 1 Block diagram of MIMO system with decoupler 

 

3 Design of stabilising PI controllers 

Consider the loop transfer function of the process with decoupler qii(s) to be controlled by 
the PI controller Kcii(s) where i = 1, 2 then: 

( )
( )

( )
iiii θ s

ii
ii

N s
q s e

D s
  (4) 

( ) Iii
cii pii

k
K s k

s
   (5) 

where kp and ki are the tuning parameters of the PI controller (Manabe, 1998). 
Decomposing the numerator and the denominator polynomials of equation (4) into their 
even and odd parts, and substituting s = jω gives: 

   
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2 2
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N ω jωN ω
q jω

D ω jωD ω

  


  
 (6) 

The closed loop characteristic polynomial of the system can be written as: 
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Equating the real and imaginary parts of Δ(s) to zero 

   
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Solving equaiton (8) for kp and ki 
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The stability boundary locus in the (kp, ki) plane can be obtained using equations (9)–(10) 
(Senthilkumar and Lincon, 2012). It is observed that the stability boundary locus depends 
on the frequency (ω), gain margin (A) and phase margin (φ). The gain and phase margin 
are two important frequency domain performance measures (Ho et al., 1995). 

4 Modelling of column pressure 

The valid linear model is determined by experimentation with the open loop, which is 
achieved by introducing incremental change in the heater power and reflux flow rate of 
the reboiler and then recording the pressure developed in the column near the bottom 
tray. As a MV, the reflux flow rate and the reboiler power rate are used. Column 
modelling is classified as basic modelling, empirical modelling, and gray box modelling. 
Most process industries rely on empirical modelling to identify the model based on 
experimental data collection analysis. 

Empirical modelling method reduces the deviation between the model and data 
between root-mean-square. The input-output relationships in this empirical model are 
based on the data obtained by the open loop test. The response is optimised through the 
leapfrogging optimisation technique, which uses all the N data points to fit the model and 
rejects noise and disturbance. This method uses nonlinear regression and provides the 
FOPTD model coefficient based on the best match between the model and the 
experimental plant output (Vinayambika et al., 2017). 

0.02520.633

0.665 1
sFOPDT model is e

s



 

The reflux flow rate L (u1) and reboiler power rate Q (u2) was used as MV. Bottom tray 
temperature T (T1) and pressure P (P1) were the control variables and that were recorded. 
Experimentation with the open loop is performed to determine the column pressure 
model. In order to identify the model, the open loop response is considered by keeping 
constant reflux at 20% and giving the heater a step change from 50% to 80% and 
determining the pressure developed in the column. The second step is to keep the heater 
constant at 70% and to change the reflux step from 40% to 70% and to determine the 
pressure induced within the column. Figures 2–3 show the appropriate experimental 
response and the appropriate model response. 
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Figure 2 Experimental data and model fit of bottom pressure to a step of 30% in reflux (pressure 
transmitter is in the range of 0–0.5 bar) (see online version for colours) 

 

Figure 3 Experimental data and model fit of bottom pressure to a step of 30% in reboiler heater 
(see online version for colours) 
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5 Simulation results and discussion 

The mathematical model for the top and bottom tray temperature of the pilot plant 
distillation column is (Vinayambika et al., 2017): 
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 (11) 

The bottom tray temperature and pressure are considered as process variable in the 
current research. The step change is applied to the reflux and heater, the time-related 
regression curve for the output response is obtained across the tray temperature and 
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downward pressure. For simulation studies, the model identified as 2 * 2 square systems 
was considered. Then, the bottom tray temperature FOPDT model from equation (11) and 
the bottom pressure FOPDT model considered from Section 4. 
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The decoupler is: 
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The diagonal elements of open loop transfer function of the process are obtained as: 
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The loop transfer function from equation (14) can be decomposed into numerator and 
denominator terms (Thirunavukkarasu et al., 2019). By equating the real and imaginary 
terms of the system’s characteristic polynomial to zero, we can obtain the frequency-
dependent boundary stability locus in plane (kp, ki) as: 

11
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 (16) 

A permissible set of PI controllers can be obtained from the boundary stability locus as 
shown in Figure 5. And, the equations (15)–(16) used for the desired gain margin and 
phase margin range from 3 to 8 and phase margin from 30 degree to 60 degree 
respectively. Figures 6–11 show the closed loop servo and regulatory response to the 
process transfer function model for the set of PI controllers. Table 1 shows the allowable 
set of PI values on the boundary locus. Tables 2–3 provide a comparison analysis of the 
performance indices obtained from the boundary stability locus region for the allowable 
set of PI controllers. Figure 12 show the systems closed loop performance when the PI 
controller value is beyond the locus of boundary stability. 
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Table 1 Admissible set of PI controllers 

Case 
Loop 1  Loop 2 

Kp Ki  Kp Ki 

1 0.03593 0.1699  –0.003116 –1.41 

2 0.4102 0.2095  –0.1835 –1.493 

3 0.2926 0.276  –0.2261 –1.021 

4 0.5271 0.405  –0.3595 –1.567 

Figure 4 Lab scale binary distillation column setup (see online version for colours) 

 

Table 2 Comparison of performance index for servo response 

Case 

IAE  ISE 

Y1 Y2  1 2Y Y   Y1 Y2  1 2Y Y  

1 14.9 10.3 25.241  10.60 19.57 30.174 

2 12.1 10.3 22.448  8.348 12.02 20.373 

3 9.19 9.04 18.232  7.803 8.255 16.058 

4 7.80 8.30 16.108  7.509 9.128 16.637 

Case 

ITAE  ISTE 

Y1 Y2  1 2Y Y   Y1 Y2  1 2Y Y  

1 144.67 212.4 357.15  60.85 92.56 153.4 

2 105.27 67.59 172.86  35.24 37.16 72.4 

3 45.681 42.95 88.631  24.68 30.41 55.097 

4 20.867 67.23 88.097  15.64 27.87 43.511 
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Table 3 Comparison of performance index for regulatory response 

Case 
IAE  ISE 

Y1 Y2  1 2Y Y   Y1 Y2  1 2Y Y  

1 14.9 10.3 25.25  10.6 8.97 19.57 

2 12.1 10.3 22.46  8.34 9.026 17.366 

3 9.19 9.04 18.237  7.80 8.256 16.056 

4 6.86 10.3 17.18  7.50 9.13 16.63 

1 144.71 68.05 212.76  60.85 31.75 92.6 

2 105.2 67.88 173.08  35.23 31.20 66.43 

3 45.68 42.26 87.94  24.68 27.41 52.09 

4 20.86 67.70 88.56  15.64 30.91 46.55 

Figure 5 Boundary stability locus for loop function (see online version for colours) 
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Figure 6 Servo response of Y1 when input r1 = 1 and r2 = 0 (see online version for colours) 

 

Figure 7 Servo response of Y2 when input r1 = 1 and r2 = 0 (see online version for colours) 
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Figure 8 Servo response of Y1 when input r1 = 0 and r2 = 1 (see online version for colours) 

 

Figure 9 Servo response of Y2 when input r1 = 0 and r2 = 1 (see online version for colours) 
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Figure 10 Regulatory response of Y1 and Y2 when load 1 = 1 and load 2 = 0 (see online version 
for colours) 

 

(a) 

 

(b) 
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Figure 11 Regulatory response of Y1 and Y2 when load 1 = 0 and load 2 = 1 (see online version 
for colours) 

 

(a) 

 

(b) 
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Figure 12 Servo response of Y1 and Y2 when PI value selected outside the boundary locus  
(see online version for colours) 

 

(a) 

 

(b) 
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Figure 13 Real time implementation of PI controller for temperature and pressure control in pilot 
plant binary distillation column (see online version for colours) 

 

6 Conclusions 

The PI controller based on the boundary stability locus is designed, simulated and 
implemented to control binary distillation column tray temperature and pressure. After 
applying decoupling to zero, the PI controller is designed to equate the real and 
imaginary part of the characteristic equation of both the loop. The controller value is 
obtained by plotting in (Kp, Ki) plane the stability boundary locus. For the controller 
obtained, the simulation studies show good servo tracking and regulatory response. The 
real-time experimentation was also carried out following the simulation. It was observed 
that when the value of the PI controller is selected outside the boundary locus, the system 
reaches the unstable state. For the simulation model of the distillation column transfer 
function, the servo and regulatory responses are presented. This work can be extended to 
non-square process as well as stirred tank reactor. 
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