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Abstract: This paper considers an entropic approach to solving the problem  
of finding the optimal resource distribution within a complex system and  
its sub-systems. We consider the indicator of uneven distribution of resources 
in a complex economic system and the adaptation potential based on the 
approximation of the Lorentz diagrams with one and two-parameter families of 
functions. The dependence of the adaptation potential on the values of the 
uneven distribution of resources is investigated. The entropic approach allows 
to not only monitor the optimality of resource distribution, but also develop 
recommendations on distribution readjustment in adaptive mode and dynamic 
conditions. 
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1 Introduction 

The evolution of modern economic systems is characterised by continual flux of the 
number of interacting segments (agents), their functional orientation and complexity of 
relations\associations\inter-connections. Evolution of a modern economic system is 
characterised by continual change of interacting subsystems (agents1, 2), their functional 
orientation and inter-relational complexity. The constant change in the economic system 
naturally leads to a change in the efficiency3 of its work as a whole. Managerial decisions 
that are aimed at amending previous changes for the purpose of restoring the efficiency 
of an economic system often lead to a contrary result. Specifically, managerial solutions 
that implicate simplified interrelations or decrease in the number of agents lead to a 
reduction of system operational efficiency. Thus, a fundamental task of determining the 
viability and promptness of solution implementation arises. The solution of the task at 
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hand can be attained within the framework of entropic approach for selection of a 
managerial solution (Antoniou et al., 2002, 2004; Aoki, 1998; Liiv, 1998; Haritonov 
1999; Haritonov et al., 2008; Kryanev et al., 2010; Panchenkov, 1999, 2007; 
Prangishvili, 2000, 2003; Vlasova, 2006; Maisseu, 2016, 2017). Fundamentally, the 
entropic approach for developing optimal managerial solutions is based on the theory and 
experiments that determined the interconnection between the objective function of a 
multi-agent system and the distribution of resources consumed by an economic system 
during its activities. 

2 Distribution of resources in a complex economic system 

The efficiency of system activity may be measured by attaining the values of some target 
function of a given system. Specific expression for evaluating the values of a target 
function may vary. For instance, the consolidated profit may be chosen as a target 
function of a multi-agent business structure. For this purpose, the consolidated profit is 
calculated as the difference between the revenues and expenses of all in-system agents 
for a fixed period of time. Premised on this definition of target function, arises a 
temptation to multiply profits by means of engaging more agents. However, the 
multiplication of agents does not necessarily lead to a corresponding increase in profits. 
Namely, the increase in the number of agents causes a non-linear escalation of system 
complexity which conditions the engagement of additional resources. Eventually, there 
comes a point at which the increase of number of agents does not contribute to the 
integral efficiency of a system. An alternate route consists of simplifying the managerial 
process at the expense of agent reduction and an inevitable resulting decrease in integral 
profits. Naturally, in this case the business structure is tending to an agent set and a 
resource distribution at which the maximum value of the system’s integral operational 
efficiency is reached. At first glance the introduced example demonstrates that at the 
creation and the subsequent operation of a system a certain resource distribution is 
projected and sustained. Actual resource distribution of a complex system is contained in 
the range within two extreme distribution types, specifically, uniform resource 
distribution and the distribution involving the allocation of a resource to one agent only. 
The question is how one should determine the ‘golden proportion’ of resource 
distribution among parts of a system that establishes maximal efficiency and optimal 
integral continuity of a system. An answer to this big question has been proposed within 
the entropic approach (Antoniou et al., 2002, 2004; Panchenkov, 2007; Haritinov et al., 
2008). The present paper introduces the notion of an adaptation potential of a system, 
maximisation of which will contribute to sustainability of a complex system in the long 
term. 

3 Commensuration of resource distribution 

3.1 Lorenz curves and the corresponding analytic approximations 

Let indices 1,.., ,...,i n N  denote all agents of an economic system, among which the 
resources Gi are distributed. To draw the Lorenz curve (Kryanev et al., 2010; 
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Imamutdinov, 2014) of resource distribution  , 1, ,iG i N   one ranges the input series 

in question 1 2 ... NG G G   . Next the accumulated sums 

1

n

n i
i

S G


    (1) 

are calculated and plotted on a plane graph with axes /x n N  and /n Ny S S  (the 

continuous polygonal line in Figure 1). 

Figure 1 Resource distribution of a complex system on a Lorenz diagram 

 

For the purpose of applying analytical methods we approximate the piecewise linear 
Lorenz curve throughout the interval (0,1)x  with a continuous curve (the dashed line 

in Figure 1). We propose that the class of functions y = y (x, a), given by expression 

 1/
( , ) 1 1 ,y x x

      (2) 

may serve as continuous approximants of the Lorenz curve (see Figure 2). The parameter 
 (1 )    acts as a proportionality (degree of irregularity) indicator of share 

distribution and hence is the counterpart of Gini index KG, used extensively in economics 
as an indice of resource distribution inequality (Haritonov et al., 2008; Kryanev et al., 
2010). 

1

0

1 2 ( , ) ,0 1.G GK y x dx K      (3) 

From (2) at  =1 it follows that ( , ) ,y x x   which corresponds to the uniform resource 

share distribution while Jini Index KG = 0, whereas at    the share distribution 
approaches the extremely irregular distribution while Jini Index 1GK   (see Figure 1). 

It should be noted that Jini Index is equal to the ratio of the area of the figure formed by 
curves y = x and ( , )y y x   to half of the area of the square depicted in Figure 1. We 

name the functions y (x, ) control functions (Kryanev et al., 1998). 
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Figure 2 Plots of control function y (x, ) for different values of α 

 

4 Frequency distribution of resource shares 

In regards to complex systems, analysis works (Prigogine, 1962, p.6; Nicolis and 
Prigogine, 1977; Kondepudi and Prigogine, 1998) state: “In the usual presentation of 
mechanics the essential quantities are the coordinates and momenta. Here, however, the 
basic quantity is the statistical distribution function p, from which the average values of 
all functions of coordinates and momenta may be computed. Thus we may say that a 
knowledge of p implies complete knowledge of the “state” of the system. In this 
development, the “state” of the system is given by the correlations and in homogeneities, 
and the evolution of the system becomes a dynamics of correlations, governed by the 
Liouville operator.” 

Alternately, it may be asserted that every control function ( , )y y x   has a 

corresponding statistical density function (x, ),   that may be found according to the 

following procedure. By virtue of the fact that the function ( , )y y x   is defined on the 

plane (x, y) over the range L={(x, y); 0 1; 0 1, }x y y x      and is a monotonically 

increasing, continuously differentiable, downward convex function that takes on values 
(0, ) 0, (1, ) 1y y y y      at 1 ,     its derivative is given by 

 
 

1

1

( , )
, at >1

1

dy x x
g x a

dx
x




 

 


 


 (4) 

Within the range 0 1x   the function g(x,) increases monotonically from g(0, ) = 0 
to (1, ) .g    It should be noted that the meaning of the expression (4) becomes clear 

if we conduct a reciprocal substitution of variables x and y with initial values at N >>1 
(Kryanev et al., 1998; Prangishvili, 2000): 

 /( , )

( / )
n N n n

N

d S S dS Gdy x N
g

dx d n N dn S G


      (5) 
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From (5) it follows that the deduced derivative function g is a share of a contribution, 
reduced in relation to the average contribution size / .NG S N  Equation (4) allows us to 

find the inverse function (at 1)   

1

1

1/

1

( , )

1

g
x g

g












 
 

 

 (6) 

This implies that when g runs from 0 to  the function ( , )x g   runs from (0, ) 0x    to 

( , ) 1.x    Hence, the function ( , )x g   acts as the distribution function of a positive 

random variable g > 0, whereas its derivative /dx dg   acts as the density distribution 

function of the input g: 

2

1

1

1

( , ) 1
( , )

1
1

dx g g
g

dg
g





 


 









 
  

 
 

 (7) 

As it appears from Figures 2 and 3, the function ( , 2)y g , that corresponds to 

circumference on the Lorenz diagram ( = 2), acts as a border that separates the family of 
densities ( , )g   into two sets. Moreover, ( , 2)g  is the only function of the family 

( , ),g   that takes on a bounded non-zero value at g = 0. 

In addition to the one-parameter family of functions (2), we use a two-parameter 
family of functions 

 
1

( , , ) 1 1 ,0 ,y x x           (8) 

which makes it possible to approximate the Lorentz diagrams with greater accuracy in 
the case of a violation of its symmetry relative to the second diagonal of the Lorentz 
square 0 , 1y x   (see Figure 1). 

The two-parameter function (8), by analogy with the probability density (7),  
found a two-parameter probability density ( , , )g    (Antoniou et al., 2004), see also  

(Rasche et al., 1980; Chotikapanich, 2008). 

Figure 3 Plots of density function ( , )g   of input g for different values of coefficient α 
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5 Entropy as an indicator of a system’s adaptation potential 

For known density function ( , )g   the integral 

 
0

( ) ( , ) ln ( , )S g g dg    


    (9) 

is aligned with entropy. It has previously been named adaptation potential in works 
(Antoniou et al., 2002; Haritonov et al., 2008; Kryanev et al., 2010) and has been used 
for economic systems analysis. Numerical results of computing the values of adaptation 
potential are presented in Figure 4. 

As is evident, the adaptation potential calculated by (8) reaches its maximal value at 

0 1,84.   This value corresponds to the discovered commensuration of the agents’ input 

shares to the potential of the system at large. In other words, the distribution at 0 1.84   

corresponds to the ‘golden ratio’ between two extreme cases: uniform distribution at  
 = 1, and an absolutely non-uniform distribution is attained at .   The latter case 
denotes a situation when a rigid vertical of control is present, and all the resources are 
redistributed into one segment of a system. 

Figure 4 Plot of the adaptation potential as a normalised function S ()  

 

The adaptive indicator S (, ) for a two-parameter family of functions (8) (Antoniou  
et al., 2004) 

    
0

( , ) , , ln , ,
g

S g g dg          (10) 

According to Ashby’s Law of Requisite Varity, the entropy of a controllable system is 
indicative of the state manifold degree of a controllable system and, thereby, the 
possibility of a state transition (Ashby, 1961). Adaptation potential is a measure of the 
variety of a considered system and is alike to Ashby’s entropy measure of a controllable 
system. 
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Indeed, when a system’s state is typified by the maximal value of the adaptation 
potential, then if redistribution of resources is required for a transition to a new state with 
a different value of the non-uniformity indicator, then generally the amount to be 
transferred is minimal in comparison to any other system state. Besides, if the system is 
characterised by maximal value of the adaptation potential, this guarantees minimal 
variation of the adaptation level due to level changes of the degree of resource 
distribution irregularity within sub-systems of a complex system. 

Hence, when the distribution of resources is similar to uniform ( = 1) or to 
maximally non-uniform ( ),   a system has a lower capacity for adaptation to the 

varied external conditions. This follows from the minimal local values of adaptation 
potential for these two distribution types (see Figure 4 and Haritonov et al., 2008; 
Kryanev et al., 2010). 

It is notable that in the range 0   that corresponds to ‘anarchistic’ control 

tendencies, the drop of the adaptation potential relatively to its maximal value is more 
pronounced in comparison to the constrained decrease in the range 0 ,   which is 

characterised by the tendency of strengthening the ‘chain of command’. 
A viable functional economic system is characterised by minimal resource costs and 

the shortest adaptation times. The use of share distribution with the maximal value of the 
adaptation potential allows for more freedom in choosing within the range of viable 
managerial decision and consequently the optimal capacity to adapt to ongoing changes. 

In the process of system operation the real input share distribution within individual 
units of a complex system may differ from the projected optimal distribution that 
corresponds to the maximal value of the adaptation potential. What is more, the 
exceedance of the real share in relation to the projected share that corresponds to the 
‘golden ratio’ of a subset is a signal of its high performance. Conversely, a reduction in 
the real share relatively to the projected share of a subset indicates its weakness. 
Therefore, continual time monitoring of real share values and the value of the adaptation 
potential indicator are a measure of the current system state. This allows for time 
efficient managerial decision making aimed at optimising the structure and the 
functionality of the system. 

The entropic approach can be used to analyse various data with regards to variability 
and the capacity to adapt to change. Below is a result of an implementation of the 
entropic approach for analysis of energy production in selected world regions. For this 
purpose, recent data (BP, 2017) on primary energy consumption by source has been 
processed with the intent to determine any possible trends in fuel-power complex 
development. The present distribution of primary energy consumption by the six sources: 
oil, natural gas, coal, nuclear energy, hydroelectricity, and renewables, has been depicted 
by the Lorenz curves, presented below (Figures 5–8). The empirical shares of the energy 
market, allocated to the various power sources, were approximated by the single-
parameter and the two-parameter approximants. The results of applying the procedure 
proposed above for determining the parameter  and . The value of the adaptation 
potential S (a) and S (, ) are presented below. 

Thus, symmetry breaking in the Lorentz diagram leads to a decrease in the adaptation 
of the economic system under consideration. 

The single-parameter approximating curves are not always proximate enough to the 
empiric Lorenz curves. In that case a two-parameter approximant is advisable and allows 
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for a better fit as is depicted in Figure 5. Accuracy of approximation is measured by the 
parameter – sum of squared differences between the given data and the results of the 
approximation. 

In some cases, however, the single parameter approximation is feasible as the 
underlying data result in a symmetric (with regards to the second diagonal of the Lorenz 
square) distribution. Such is the case for the energy source distributions in EU, Russia 
and China, which are reasonably well fitted by the single parameter approximants  
(see Figures 6–8). 

Figure 5 The one-parameter and the two-parameter approximations of the Lorenz curve of 

energy consumption in the World     2014 2015 2016, 0.75; , 0.74; ( , ) 0.73S S S         

 

Figure 6 The one-parameter and the two-parameter approximations of the Lorenz curve of 
energy consumption in the EU 
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Figure 7 The one-parameter and the two-parameter approximations of the Lorenz curve of 
energy consumption in Russia 

 

Figure 8 The one-parameter and the two-parameter approximations of the Lorenz curve of 
energy consumption in China 

 

It may be noted that the annual change in the parameters  and  and the value of the 
adaptation potential is gradual, but overall the values  and  seem to tend to the values 
that correspond to the sustainable distribution ( , )g   and the optimal value of the 

adaptation potential S (a). 
Thus, it follows from Figures 6–8 that for the EU, Russia and China, the values of the 

adaptation potential remain almost constant, at least for 2014–2016. This shows a 
sufficiently large degree of adaptive stability for these three economic systems. The 
previously described regularities of the adaptation potential of a complex system are in 
accord with the recently developed ‘swarm technologies’ that simulate ‘Swarm Intelligence’ 
(Imamutdinov, 2014; Rzevski and Skobelev, 2014; Waud, 1990). Indeed, the aim of 
‘swarm technologies’ is to optimise the process of controlling a complex system or to 
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redistribute the resources of a system among its subsystems in such a way as to increase 
the attained value of the target function. An example of an implementation of swarm 
technologies, based on the optimal resource distribution among independent portions of a 
complex economic system, is the work activity management of a taxi company in 
London (Imamutdinov, 2014). 

6 Conclusion 

Studying complex systems is premised on two approaches to effective operation with 
regard to the developmental stage of a system. If a system is currently in the process of 
formation, it is necessary to construct its structure and the interaction of its sub-systems 
in such a way as to secure its sustainability. If a system is currently in a state of dynamic 
operation, it is necessary to sustain its optimal structure, which is responsible for the 
greatest possible stability and resistance, taking into account any changes in system 
performance. The procedure, based on the adaptation potential that was proposed in this 
paper, allows finding the solutions to the two previously stated problems. Examples of 
the application of the proposed scheme in the article for the analysis of energy 
consumption in such countries and regions of the world as the European Union, Russia, 
China and the world as a whole are considered. 
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Notes 

1 Agent – part of a system, that acts independently or on one’s behalf. 

2 A multi agent system consists of autonomous agents, capable of percepting the present 
situation and acting, interacting with peers, continuously competing and cooperating. 

3 Efficiency reads as a measure of reaching a specified value of any target function 
characteristic of considered system in relation to the task at hand (revenue maximisation, 
increase in profitability, output expansion, etc.) 


