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Abstract: The recent advances in cryptanalysis techniques and the leakage of information about 
the cryptosystem used are major threats to information systems. An adversary may succeed in 
decrypting ciphertexts, while users of a particular cryptosystem unknowingly continue using the 
compromised cryptosystem. Therefore, this paper presents a novel cryptosystem based on Latin 
square and cognitive AI/ML for blockchain and covert communications. This cryptosystem is 
capable of operating in quadruple modes keyless, symmetric, asymmetric, and hybrid encryption 
to cipher in cipher, and hence we call it CipherInCipher. Unlike all contemporary techniques 
including obscurity, CipherInCipher is a public-based approach that does not depend on the 
secrecy of any of its related components. It attains a high level of security that protects private 
information not only by having strong ciphertext but also by preventing an adversary from 
obtaining the actual ciphertext. The presented validation study demonstrates the robust 
CipherInCipher capabilities of achieving the cryptographic goal. 

Keywords: cryptography; cryptosystem; cipher; ciphertext; security; secure communications; 
covert communications; blockchain. 

Reference to this paper should be made as follows: Desoky, A., Ammar, H., Fahmy, G.,  
El-Sappagh, S., Hendawi, A. and Basha, S.H. (2023) ‘A novel keyless cryptosystem based on 
Latin square and cognitive artificial intelligence for blockchain and covert communications’,  
Int. J. Applied Cryptography, Vol. 4, Nos. 3/4, pp.219–237. 



220 A. Desoky et al.  

Biographical notes: Abdelrahman Desoky is the CEO/Founder of Scired: Scientific Research 
and Development, and he is also an Associate Professor in the Department of Computer Science, 
at Claflin University. He has more than 20 years of experience in computer science/engineering, 
security, and related areas in both academia/industry. He was a visiting scholar at the University 
of California, Berkeley (2022). He received his Master of Science degree from George 
Washington University (2004) and Doctoral degree from the University of Maryland, Baltimore 
County (2009); both degrees in Computer Engineering. He is the author of a security book 
entitled Noiseless Steganography: The Key to Covert Communications. 

Hany Ammar is a Professor of Computer Science and Engineering at Galala University, Egypt, 
and Professor Emeritus in the Lane Department of Computer Science and Electrical Engineering 
at West Virginia University, USA. His research interests are in software engineering and 
identification technology. He published more than 200 articles in prestigious international 
journals and conference proceedings. He served as the Lead PI and Co-PI in research projects 
funded by the US NASA, US NSF, US NIJ, and Qatar National Research Fund (QNRF). He has 
been teaching in the areas of software engineering and computer architecture since 1985. 

Gamal Fahmy received his PhD in Electrical Engineering from Arizona State University, Tempe, 
USA in 2003. From 2003 to 2005, he was a Research Assistant Professor at West Virginia 
University, where he worked on several biometric identification and recognition projects; from 
2006 to 2012, he was with the German University in Cairo and an annual summer senior 
researcher at the Institute of Image and Computer Vision at RWTH Aachen, Germany. He won 
the Egypt National State Award in Engineering Sciences 2012–2013. His research interests 
include image super-resolution, computer vision, biometric identification, and image forensics. 

Shaker El-Sappagh received his PhD in Computer Science from the Information Systems 
Department, Faculty of Computers and Information, Mansura University, Mansura, Egypt in 
2015. He worked as a Research Professor at UWB Wireless Communications Research Centre in 
the Department of Information and Communication Engineering at Inha University, South Korea 
for three years (2018–2020). He worked as a Research Professor at Universidade de Santiago de 
Compostela, Spain for one year (2021). Currently, he is an Associate Professor at Galala 
University, Egypt since 2021. He is a senior researcher at the College of Computing and 
Informatics, Sungkyunkwan University, South Korea since 2021. 

Abdeltawab Hendawi is an Assistant Computer Science and Data Science Professor at the 
University of Rhode Island (URI). He is the Co-director of the AI-Lab at URI. He received his 
PhD in Computer Science from the University of Minnesota (UMN) in 2015. His research 
interests are centred on big data and AI, focusing on smart cities and smart health-related 
applications. 

Sameh Hassanien Basha is a computational scientist with a PhD and Master’s degrees from Cairo 
University, Egypt, specialises in machine learning, statistical methods, and optimisation 
techniques. His research centres on soft computing applications for handling imprecise data, 
utilising methods like the wavelet technique and developing neutrosophic rule-based systems 
(NRBS). In his PhD thesis, he introduced an evolutionary learning process to automate NRBS 
design, addressing their limitation in learning. His work extends to creating a hybrid system 
combining genetic algorithms and NRBS for genetic learning and knowledge base optimisation. 
His overarching research goal is advancing soft computing methods and machine learning 
algorithms. 

This paper is a revised and expanded version of a paper entitled ‘Latin square and artificial 
intelligence cryptography for blockchain and centralized systems’ presented at the 9th 
International Conference on Advanced Intelligent Systems and Informatics (AISI2023), Springer, 
Port Said, Egypt, 20–22 September 2023. 

 

1 Introduction and related work 
Cryptography or cryptology is the science and art of 
concealing information, data, or both in an illegible format 
called ciphertext (Desoky et al., 2023; NIST1, 2022; NIST2, 
2022). A ciphertext must be reversible back to its plaintext 
by only an authorised user via an operation called 
decryption (NIST3, 2022; Wade and Gill, 2022). 
Practically, the cryptographic goal is to avert an adversary 

from decrypting a ciphertext by generating a strong 
ciphertext. This can be done by utilising a strong algorithm 
that may include techniques and mathematical operations, 
etc. to generate a resilient ciphertext (Habib et al., 2022). 

On the contrary, cryptanalysis is the science and art of 
contributing to breaching a cryptosystem to eventually 
decrypt its ciphertext (NIST4, 2022). This may be achieved, 
even if a cryptosystem is unknown, via studying whatever is 
available to start from such as ciphertext, some predicted or 
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leaked information about a cryptosystem used (NIST5, 
2022; Munir et al., 2022). Cryptanalysis may employ other 
techniques, tools, and applications such as math, statistics, 
arithmetic, reverse engineering, artificial intelligence, 
algorithms, hardware and software applications, etc. to 
perform its task (NIST5, 2022; Munir et al., 2022). 

Yearly, the number of cybersecurity attacks is 
increasing worldwide (GAO, 2022; ALERT, 2022; DHS1, 
2022; Security, 2022). Yet, with the current political tension 
and conflicts between countries worldwide, some 
cybersecurity attacks are directly done by governments or 
their supporters (DHS1, 2022; Security, 2022; DHS2, 
2022). Once a government promotes attack(s), a virtually 
endless resource gets involved for a cybersecurity attack 
and cryptanalysis to decipher ciphertext to get valuable data 
and information. 

Thus, tremendous dedication, obsession, and efforts 
motivate the recent advances in cryptanalysis techniques 
and the progressive leak of information about cryptosystems 
used are significant threats to cryptography (ALERT, 2022; 
DHS1, 2022; Security, 2022). Yet, an adversary may 
succeed in decrypting ciphertexts, while users of a particular 
cryptosystem unknowingly continue to use a compromised 
cryptosystem. 

Contemporary cryptography approaches are mainly 
categorised into two types, symmetrical and asymmetrical 
key cryptography (Stallings, 2019; Koblitz, 1994). 
Symmetric key cryptography primarily refers to particular 
encryption techniques in which a legitimate communicating 
party shares the same secret key for encrypting and 
decrypting (Stallings, 2019; Koblitz, 1994). Asymmetric 
key cryptography such as a public key cryptosystem uses a 
pair of keys: a shared public key and an unshared private 
key (Stallings, 2019; Koblitz, 1994). Unlike symmetrical 
key encryption, a public key is shared and distributed 
publicly for anyone to use which resolves the key 
distribution problem (Stallings, 2019; Koblitz, 1994). 

Some additional concerns of contemporary 
cryptography approaches may be summarised as follows. 
Most contemporary cryptography approaches have been 
used for a long time and this by itself is risky regardless of 
the name and type of any cryptosystem (Koblitz, 1994; 
COMPW, 2022). This is because every cryptosystem has its 
own life cycle time. Theoretically, the longer it is used the 
higher the probability of being breached because adversaries 
and researchers will have a good long time to contribute to 
breaching a cryptosystem (Koblitz, 1994). In addition, over 
time scientific research, applications, tools, software 
applications, computer systems, scientists, experts, and 
adversaries become more advanced and can contribute to 
breaching a secure cryptosystem. Yet, all users of 
contemporary cryptography approaches must use 
cryptographic keys regardless of the type of cryptosystem 
used. Moreover, the increasing number of phishing attacks 
and loss of key incidents became additional threats and 
vulnerabilities to contemporary cryptosystems too (DHS3, 
2022). 

The above issues led us to develop and present in this 
paper a novel cryptosystem based on Latin  
Square (LS) to Cipher In Cipher (CipherInCipher). Our 
proposed cryptosystem is for blockchain and covert 
communications capable of operating in quadruple modes 
keyless, symmetric, asymmetric, and hybrid encryption. 
Unlike all contemporary techniques including obscurity, 
CipherInCipher is a public-based approach that does not 
depend on the secrecy of any of its related components. It 
attains a high level of security that protects private 
information not only by having strong ciphertext but also by 
preventing an adversary from obtaining the actual 
ciphertext. The presented validation demonstrates the robust 
capabilities of achieving the cryptographic goal. 

The remainder of this paper is organised as follows. 
Section 2 presents the CipherInCipher architecture.  
Section 3 demonstrates the implementation and the general 
validation of the proposed architecture. Section 4 discusses 
security validation and possible attacks. Finally, Section 5 
concludes the paper. 

2 CipherInCipher 
To illustrate CipherInCipher, let us consider the following 
scenario. Bob and Alice work for a high-tech company, 
which involves a high level of security to protect sensitive 
information about new inventions and new products because 
of recent cyberattacks (ALERT, 2022). They considered the 
worst-case scenario where an adversary may be capable of 
decrypting all contemporary ciphertexts. Therefore, the 
CipherInCipher cryptosystem is selected to be utilised for 
this mission. This is because CipherInCipher is resiliently 
secure under the unfortunate assumption that an adversary is 
capable of breaking all contemporary cryptography 
algorithms. CipherInCipher attains a high level of security 
that protects private information not only by having strong 
ciphertext but also by making the actual ciphertext invisible 
to an adversary. When using CipherInCipher, the only full 
ciphertext that is normally visible to an adversary is a false 
ciphertext. This false ciphertext is either an unwanted 
cyphertext that conceals non-sensitive information or a fake 
ciphertext, but it is not the pure actual ciphertext. However, 
when using CipherInCipher a pure actual ciphertext is 
shredded into different sizes and it embeds it into either one 
relatively large false ciphertext or multiple relatively large 
false ciphertexts. 

Note that the shredding and embedding procedures are 
done in such a sophisticated way based on a relatively large 
LS to make it more secure and to be extremely hard, if not 
impossible, for an adversary to reveal a plaintext (Laywine 
and Mullen, 1998; Dénes and Keedwell, 1991; Keedwell 
and Dénes, 2015). 

Concisely, the CipherInCipher algorithm is achieved 
through three main phases as follows. First, CipherInCipher 
generates false ciphertext(s) by either legitimate ciphertext 
of unwanted plaintext or fake ciphertext. Second, it encrypts 
the intended message via symmetric, asymmetric, or hybrid 
encryption, as per user choice. Third, it embeds the 
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encrypted message from phase 2 into the generated 
ciphertext from phase 1. Note that the embedding procedure 
is done according to a predetermined algorithm based on a 
relatively large LS with a minimum value of N = 11 to make 
it much more secure (Laywine and Mullen, 1998; Dénes 
and Keedwell, 1991). 

It is worth noting that CipherInCipher gives legitimate 
users the option to operate in quadruple modes  
keyless, symmetric, asymmetric, and hybrid encryption by 
utilising a contemporary cryptography algorithm to secure 
communications, data, etc. as per users’ choice in 
configuring its setup. One may say if we use a 
contemporary cryptography algorithm, why do we need to 
use CipherInCipher? The answer in short, as stated earlier 
CipherInCipher makes an actual ciphertext invisible to an 
adversary, as demonstrated and discussed in detail in the 
upcoming sections. 

The presented cryptosystem architecture, 
implementation, and validation demonstrate the robustness 
capabilities of achieving the cryptographic goal, and the 
adequate room to achieve a high bitrate for concealing 
actual ciphertexts in false ciphertexts. 

The following sections will discuss in more detail how 
each phase, procedure, and algorithm is done. Thus, the next 
section gives an overview of the CipherInCipher 
architecture. 

2.1 The CipherInCipher architecture 
The scenario of Bob and Alice in Section 2 demonstrates 
how the CipherInCipher paradigm can be utilised. This 
subsection will present a high level overview of the overall 
core architecture of the CipherInCipher system and how it 
achieves the security goal. We then present the detailed 
components of the architecture in the following subsections. 
Note that the implementation of the CipherInCipher system 
may differ from one implementation to another. Therefore, 
the following presents an overview of the main core options 
of the CipherInCipher algorithm and its architecture. 

Architecturally, the CipherInCipher system consists of three 
main phases, as shown in Figures 1, 2, and 3 along with 
Table 1 and the pseudocode in Algorithm 1. These three 
main phases are as follows: 

• Phase 1: CipherInCipher-based system generates  
false ciphertext by creating either a legitimate 
ciphertext of unwanted message/plaintext or fake 
ciphertext, as shown in Figures 1 and 2 and will be 
described in detail in Subsection 2.2 using Table 1 and 
the pseudocode in Algorithm 1. After ciphering the 
fake text, CipherInCipher uses a cognitive AI/ML 
model/system cryptoanalysis-based, internally, to 
ensure the robustness of the resulting ciphertext. 

• Phase 2: CipherInCipher encrypts the intended 
message via symmetric, asymmetric, or hybrid 
encryption, as per user choice and its setup, as shown in 
Figures 1 and 2. This is done by using a contemporary 
cryptographic algorithm. This phase will be described 
further in Subsection 2.3. After ciphering of the 
sensitive text, CipherInCipher uses a cognitive AI/ML 
model/system cryptoanalysis-based, internally, to 
ensure the robustness of the resulting ciphertext. 

• Phase 3: CipherInCipher embeds the encrypted 
message from phase 2 into the generated ciphertext 
from phase 1. Note that the embedding procedure is 
done according to a predetermined algorithm based on 
a relatively large LS with a minimum value of N = 11 
to make it much more secure, as shown, mainly, in 
Figure 3 along with related Figures 1 and 2. This phase 
is described further in Subsection 2.4. After performing 
the embedding procedure of the legitimate ciphertext 
inside the false/fake ciphertext, CipherInCipher uses a 
cognitive AI/ML model/system cryptoanalysis-based, 
internally, to ensure the robustness of the resulting final 
ciphertext before it is used in covert communications. 

Figure 1 Illustrates the architecture and the utilisation of CipherInCipher (see online version for colours) 

 
Notes: It shows the interaction of all phases 1, 2, and 3 with each other. Then, it shows the utilisation of the CipherInCipher 

system by the communication parties. 
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Figure 2 Illustrates the architecture and the utilisation of the CipherInCipher System with detailing of phase 1 (see online version  
for colours) 

 
Notes: It shows the architecture and the interaction of various modules with each other in phase 1 to build a CipherInCipher-based 

system. Then, it shows the utilisation of the CipherInCipher system by the communication parties. 

Figure 3 Illustrates the architectural part of the CipherInCipher system in phase 3 that utilises LS 
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2.2 Phase 1: generating false Ciphertext 
The CipherInCipher-based system generates false ciphertext 
by creating either a legitimate ciphertext of an unwanted 
message (plaintext) or a fake ciphertext, as shown in 
Figures 1 and 2. The algorithm of phase 1, as shown in 
Figures 1 and 2, and Algorithm 1 along with Table 1, 
consists of several procedures (steps) that may reach up to 
ten procedures. Each procedure of Phase 1 will be executed 
in its independent step, as shown in both Table 1 and 
Algorithm 1 (the pseudocode). 

Table 1 Shows the list of all steps of phase 1 

Step # in 
phase 1 What will do in each step (task detailed) 

Step 1 Provides Random resources of unwanted 
plaintexts. This is the initial input. 

Step 2 Enables a selector that randomly selects unwanted 
plaintexts and forms a message(s) from step 1. 

Step 3 Decides whether to utilise a multiple or single 
random unwanted plaintext(s). In this step, the 
CipherInCipher system will generate either 
multiple or single random unwanted plaintext(s) 
based on user setup and/or the implementation 
utilised and/or both together. 

Step 4 Decides whether to utilise an unaltered or altered 
unwanted plaintext. 
If it is decided to utilise an unaltered of unwanted 
plaintext, then go to step 7, otherwise, go to the 
next step (step 5). 

Step 5 If it is decided to utilise an altered of unwanted 
plaintext, then randomly shred unwanted 
plaintext(s). 

Step 6 Randomly mix the shredded unwanted plaintext(s) 
to form a message or group of messages. 

Step 7 Encrypts the output of step 4 or 6 using the 
selected contemporary cryptographic algorithm by 
the user or by the CipherInCipher system’s setup, 
which includes several cryptosystems to be used 
for that. 

Step 8 Decides whether to utilise an unaltered or altered 
Ciphertext. If it is decided to utilise unaltered of 
unwanted Ciphertext, then, go next (step 9), 
otherwise go to phase 3. 

Step 9 If it is decided to utilise an altered ciphertext, then, 
the CipherInCipher system randomly shreds the 
ciphertext. Then go to the next step (step 10) 

Step 10 Randomly mix the shredded ciphertext to form a 
fake ciphertext or group of fake ciphertexts that 
look(s) like legitimate ciphertext(s). 

Step 11 Phase 2 
Step 12 Shredding the output of phase 2 based on phase 3. 

In detail, step 12 shreds the output of phase 2 (step 
11) based on phase 3, phase 3 setup, phase 3 
implementation, and its LS. 

Step 13 Phase 3 

Phase 1 as stated before has up to ten steps. Steps 1 to 6 are 
responsible for preparing false plaintext to be encrypted to 
generate a false ciphertext, as follows. Step 1 is the initial 

input to the CipherInCipher system which provides random 
resources of false plaintexts (unwanted). Then, step 2 
enables the selector to randomly select false plaintexts and 
forms an unwanted false message from step 1. Step 3 
decides whether to utilise a multiple or single random false 
plaintext. In this step, the CipherInCipher system based on 
user setup and/or the implementation utilised and/or both 
together will generate either multiple or single random 
unwanted plaintexts. 

Algorithm 1 The CipherInCipher algorithm pseudocode 

BEGIN 
Step 1: Provides random resources of unwanted plaintexts; 
 // This step is an input. 
Step 2: Enables a selector that randomly selects unwanted 
 Plaintexts and forms a message(s); 
 // From Step 1. 
Step 3: IF multiple random unwanted plaintext(s) == True 
  /* In this step, the CipherInCipher system will 

generate either multiple or single random 
unwanted plaintext(s) based on user setup and/or 
the implementation utilised and/or both together. 
*/ 

 Then 
  Generate the number needed of multiple random 

unwanted plaintext(s); 
   // From step 2; 
 Else 
  Generate single random unwanted plaintext; 
   // From Step 2; 
Step 4: IF Altered unwanted plaintext == True 
 Then 
   Begin 
Step 5:    Randomly shred unwanted plaintext(s); 
     // This step will generate altered 

unwanted plaintext by shredding the 
output of step 3. 

Step 6:    Randomly mix the shredded unwanted 
plaintext(s) to form a message or group of 
messages; 

     /* The input of step 6 comes from step 
5. However, based on step 3, it will 
generate a single message or multiple 
messages. */ 

   End 
Step 7: Encrypt the output from the previous step (step 4 or 6); 
    /* The previous is a step 4 or 6. This is 

done by using the selected contemporary 
cryptographic algorithm by the user or by 
the CipherInCipher system’s setup. */ 

Step 8: If Altered Ciphertext == True 
  Then 
   Begin 
Step 9:    Randomly shreds the Ciphertext; 
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Step 10:   Randomly mix the shredded ciphertext to 
form a fake ciphertext or group of fake 
ciphertexts; 

/* This will be done to look like a legitimate ciphertext(s). */ 
  End 
Step 11: Phase 2; 
Step 12: Shredding the output of phase 2 based on phase 3; 
/* Shredding the output of phase 2 (step 11) based on phase 3, 
phase 3 setup, phase 3 implementation, and its Latin Square. */ 
Step 13: Phase 3; 
END 

Step 4 decides whether to utilise unaltered or altered false 
plaintext. The utilisation of altered false plaintext 
strengthens the final ciphertext that is generated by the 
CipherInCipher system. This is because for an adversary to 
decipher an encoded message and to claim successful 
deciphering, it must reach meaningful plaintext. So, when 
CipherInCipher randomly alters a false plaintext, it makes 
an adversary never reach meaningful plaintext. However, if 
CipherInCipher decides to utilise unaltered false plaintext, 
then CipherInCipher will escape steps 5 and 6 and will jump 
to step 7, otherwise, go to the next step (step 5). Reaching 
step 5 means it is decided to alter the false plaintext. 
Therefore, step 5 randomly shreds the false plaintext. Then, 
step 6 randomly mixes the shredded false plaintext to form a 
single false plaintext message or group of messages. 

On the other hand, steps 7 to 10 are responsible for 
generating false ciphertext which will sooner be utilised in 
phase 3 for generating the final ciphertext that conceals the 
actual real ciphertext. Step 7 encrypts the output of step 4 or 
6 using the selected contemporary cryptographic algorithm 
by the legitimate user or by the CipherInCipher system’s 
setup, which includes several cryptosystems to be used for 
that. Then, step 8 decides whether to utilise unaltered or 
altered ciphertext. Therefore, in step 8 if it is decided to 
utilise an unaltered unwanted false ciphertext, then, go to 
next (step 9), otherwise, go to phase 3. Conversely, in step 8 
if decided to exploit altered ciphertext, then, the 
CipherInCipher system performs step 9 which randomly 
shreds the ciphertext. Then, go to the next step (step 10). 
Step 10 randomly mixes the shredded ciphertext to form a 
single fake ciphertext or group of fake ciphertexts that look 
like a legitimate ciphertext. At this moment, phase 1 has 
ended, and the final output of phase 1 will be given to phase 
3 as shown in Figures 1, 2, and Algorithm 1 along with 
Table 1. 

2.3 Phase 2: creating legitimate ciphertext 
Creating legitimate ciphertext is the procedure of encrypting 
an actual message. Given the availability of numerous 
encoding and cryptographic techniques in the contemporary 
literature that can suit CipherInCipher to be utilised 
(Koblitz, 1994), the balance of this paper will focus on the 
CipherInCipher system itself and will give examples of 
contemporary cryptography algorithms that can be utilised 
by CipherInCipher to demonstrate the applicability. Thus, in 

this paper, CipherInCipher will deal with the use of a 
contemporary cryptography algorithm, as if it is just a 
cryptographic box that receives messages as inputs and 
gives ciphertexts as outputs without too much detail about 
this box or the contemporary cryptography algorithm 
utilised. This is because it is not the actual contribution of 
this paper. 

The intended users along with the CipherInCipher 
system requirement determine the appropriate contemporary 
cryptography algorithm to utilise for achieving the 
cryptographic goal. CipherInCipher can utilise symmetric, 
asymmetric, or hybrid encryption, as per user choice. This 
gives flexibility and freedom for selecting a contemporary 
cryptography algorithm that suits the requirements of both 
the CipherInCipher system and its users. 

2.4 Phase 3: embedding real ciphertext in  
cipher-cover 

Phase 3 embeds a legitimate ciphertext that is generated 
from phase 2 into a false ciphertext that is generated from 
phase 1, as shown via pseudocode in Algorithm 2. In other 
words, it embeds the encrypted message from phase 2 into 
the generated false ciphertext from phase 1. Note that a LS 
matrix with a size of N is an N × N matrix that has a core 
property that each symbol S occurs only once in each row 
and column (Laywine and Mullen, 1998; Dénes and 
Keedwell, 1991; Keedwell and Dénes, 2015). The 
embedding procedure is done according to a predetermined 
algorithm based on a relatively large LS with a minimum 
value of N = 11 to elevate its security. When LS uses a 
minimum value of N = 11 or greater than 11, will be an 
extremely large number of different unique LS as if it is a 
virtually infinite number of different unique LS (Laywine 
and Mullen, 1998; Dénes and Keedwell, 1991; Keedwell 
and Dénes, 2015; Van Lint and Wilson, 1992; Shao, 1992). 
Each one of the unique LSs will be utilised as a security key 
for the embedding procedure in phase 3. In this embedding 
procedure (phase 3), CipherInCipher will select only one 
LS, from a virtually endless number of different LS, to 
embed the legitimate ciphertext according to the selected 
LS. It is worth noting that the security key (the selected LS) 
is unknown even to legitimate users because the 
CipherInCipher system securely computes the LS/security 
key internally without sharing it with anyone. This makes 
CipherInCipher a keyless cryptographic algorithm, despite 
giving the users an option to be partially involved in the key 
procedure generation or selection if users choose to operate 
under such an option (setup). While the CipherInCipher 
algorithm is publicly known to all adversaries, it assures the 
security of its ciphertext from any illegitimate deciphering 
and prevents any negative leakage. For example, the 
CipherInCipher system ensures the secrecy of its security 
key(s) and prevents an adversary from concluding the 
LS/security key or any other information that may lead to 
breaking the CipherInCipher system via resilient 
mathematical computations, (e.g., LS, no-reuse keys, 
rotating procedures used, etc.), as will be shown in this 
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section and the upcoming sections as well too. Note that the 
CipherInCipher system does not allow reusing an 
LS/security key once it is used. Furthermore, there are 
several ways to select a secure LS that plays the role of a 
security key in the CipherInCipher system, which will be 
discussed in this section and the next sections. 

In this paper, due to space constraints, this section will 
discuss just a few concepts and examples in general of what 
and how the CipherInCipher system and its implementation 
may utilise, including the selection of secure LS, to achieve 
the security and cryptographic goal, as follows. For 
instance, how does CipherInCipher generate and utilise an 
LS/security key securely and internally? CipherInCipher 
system is a flexible system that may utilise the following 
concepts, some of them, or more than them. This confirms 
the fact that the CipherInCipher system may differ from one 
implementation to another. 

• Keyless: CipherInCipher is a public algorithm which 
means, it is known to all adversaries. However, it 
assures the security of its ciphertext from any 
illegitimate deciphering and prevents any negative 
leakage. CipherInCipher system is a keyless system. 
Therefore, users neither hold keys nor use keys by 
themselves. However, if users want to use their keys, 
CipherInCipher can do that too, but it is not 
recommended due to the concern of losing a key, key 
leakage, stealing a key, key exchange, or similar issues. 

• LS security key: CipherInCipher system internally and 
securely generates keys to be utilised without sharing 
them with anyone. So, users have no clue about any key 
used. For instance, one type of key that is internally, 
securely, and randomly generated and utilised is the LS 
with a minimum of N = 11 to elevate its security. It 
selects a specific LS to assign it to a group of users to 
use only one time. So, there is no reuse of any internal 
keys nor will be shared with users (e.g., LS, any other 
keys, etc.). CipherInCipher system will mark it to keep 
track of the used LS to avoid reusing keys. This 
includes other virtual keys such as the order or 
selection of mathematical operations utilised will be 
changed or rotated, etc. For example, the key for 
computing and generating the sequence of all LS is 
unknown to all users and there will be no reuse of such 
key as well. Mathematically and logically, the matrix of 
LS will be discussed in more detail according to its 
utilisation in the CipherInCipher system in the 
validation section (Section 3) (Laywine and Mullen, 
1998; Dénes and Keedwell, 1991; Keedwell and Dénes, 
2015; Van Lint and Wilson, 1992; Shao, 1992). 

• Other mathematical operations based on LS matrix: 
concerning the mathematical operations, the 
CipherInCipher algorithm and its implementation can 
utilise a very sophisticated mathematical operation 
consisting of a group/combination of multiple 
mathematical operations that can be resiliently secure 
even when it is publicly known to an adversary, which 
is the case in CipherInCipher. Furthermore, a 

group/combination can be built using simple and cheap 
mathematical operations like addition, subtraction, 
multiplication, swap, shifting, and other operations, etc. 

However, the sequence order for a set of mathematical 
operations is based also on the LS matrix, which makes 
it in a dynamic order rather than just a static sequence. 
For example, when CipherInCipher utilises an  
LS-based matrix, CipherInCipher may select a row or 
column to apply a specific sequence order for a set of 
mathematical operations which will differ from one raw 
to another and one column to another too, according to 
properties of LS or/and partial LS utilised. Each cell of 
a raw or column in the LS matrix conveys a specific 
mathematical operation while that operation is unique 
in the entire raw and column according to LS property. 
Each time of communication will utilise a new row or 
column. Note that the CipherInCipher system will keep 
track of the sequence used for a particular group of 
users and it will differ each time used and from one 
group of users to another. The utilisation of the  
LS-based matrix will ensure the achievement of the 
security goal by changing the selected raw or column 
used each time via predetermined protocol internally 
randomly without sharing it with anyone. So, the 
CipherInCipher system will know/compute such 
sequence utilised but it will not be shared with anyone. 

• Fake users: additionally, the CipherInCipher system 
generates many fake users in such a way as to look 
legitimate. This is in case of any internal attacks 
involved; adversaries will not be able to analyse it to 
conclude any useful information to break the 
CipherInCipher system. 

The CipherInCipher system does not share any information 
with any user to ensure it is secure and unpredictable. 
Nonetheless, Section 3 will be more discussion and 
validation. 

Algorithm 2 Pseudocode of the embedding procedure of phase 
3 for the CipherInCipher algorithm 

BEGIN 
 If First_Time _Latin Square == True 
 BEGIN 
  Select Randomly Latin Square (LS) Where N =11; 
  Keep Track of Selected LS; 
 END 
 Else 
 BEGIN 
   Select LS Based on the implemented equation 

Where N = 11; 
/* For simplicity. Based on the implemented e.g., Selected LS is 
number 129 then it can be 129+1, 129+3, 129+5, and so on. 
This is just an easy example to make it clear, but it can be very 
complex. */ 
   Keep track of Selected LS; 
 END 
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 Keep track of the selected LS internally without sharing it 
with any users; 

 Make the False ciphertext ready; 
 // from Phase 1, as shown in detail in previous sections. 
 Make the Real Ciphertext Ready; 
  // from Phase 2, as shown in detail in previous sections. 
 For J = 1; J <= Max # of Columns; J++; 
  For i=1; i<=Max # of Columns; i++; 
  BEGIN 
   Read one LS Value at a time; 
   IF (LS Value <= EOF False Ciphertext) && (Real 

Ciphertext NOT EOF); 
 /* The false ciphertext is reasonable in size or to cover the 

real ciphertext or multiple false ciphertext will be utilised */ 
  BEGIN 
  Go to the location that is equal to the LS value on the 

false ciphertext; 
  Replace # of characters that matches the value of the 

selected LS with characters from the real ciphertext of 
phase 2; 

 /* For example: if value = 3, go to position 3 then insert 3 
characters from the output of Phase 2, as shown in detail in 
previous sections. Remove number Replace */ 

  END 
 END 
END 

2.5 CipherInCipher decryption process 
The core idea of the presented paradigm shift in this paper, 
namely CipherInCipher as the name suggests, is concealing 
legitimate ciphertext in another fake/false ciphertext. 
Therefore, the reverse process is very simple and trivial to 
only legitimate users because the recipients will simply 
apply the reverse steps. The main challenge is revealing the 
legitimate ciphertext from the fake/false ciphertext. LS 
conveys the sequence that needs to be followed for 
collecting the legitimate ciphertext in the values of the 
actual LS used. Once a legitimate ciphertext is revealed, it 
will be directly decrypted by using the reverse of the actual 
CipherInCipher system used. It is worth mentioning that 
securely LS is utilised because it is relatively easy for 
legitimate users to create and keep tracking the index of 
which LS is used as invisible-key/keyless based on a 
predetermined protocol among users. Unlike any other 
mathematical model, it is extremely hard, if it is not 
impossible, for an adversary to hack the LS key used among 
virtual infinity (very large number) of LSs when N = >11 
while securely enabling the concept of keyless, as explained 
mathematically and logically in Section 3. 

3 Implementation validation 
This section aims to demonstrate the implementation 
validation and feasibility of the CipherInCipher system and 

its distinct robustness capability of achieving the security 
and cryptographic goal, as follows. 

3.1 Implementation 
To avoid abstraction, this section demonstrates and 
discusses a possible implementation example and illustrates 
synthetic samples. The CipherInCipher system is flexible, 
and it can differ from one implementation to another and 
from one group of users to another. Thus, it can be built to 
make it harder for adversaries to attack the CipherInCipher 
system, as previously discussed. However, because of space 
constraints and for the sake of making it easier to 
understand and follow up with it, this section demonstrates 
easy examples as follows. 

• Sample of the output of phase 1: CipherInCipher 
system generates false ciphertext by creating either a 
legitimate ciphertext of unwanted plaintext or fake 
ciphertext, to avoid repetition, as explained before and 
shown in Figure 4, 1, 2, Algorithm 1, Tables 1 and 2, 
along with online tools used in ENC1 (2022) and ENC2 
(2022). 

Figure 4 Illustrates the output of phase 1, which is the altered 
false cyphertext 

  
Note: This is produced after encrypting random 

unwanted plaintext. 

Figure 5 Illustrates the output of phase 2, which is the legitimate 
cyphertext 

  

Figure 6 Illustrates the output of phase 3, which is the final 
cyphertext of the CipherInCipher system that conceals 
the actual legitimate cyphertext 

  

• Sample of the output of phase 2: CipherInCipher 
encrypts the intended message via using a 
contemporary cryptographic such as symmetric, 
asymmetric, or hybrid encryption, as per user choice 
and its setup. This is as shown in Figures 5, 1, and 2, 
along with online tools used (ENC1, 2022; ENC2, 
2022). 
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• Sample of the output of phase 3: CipherInCipher 
embeds the encrypted message from Phase 2 into the 
generated ciphertext from phase 1. Note that the 
embedding procedure is done according to a 
predetermined algorithm based on a relatively large LS 
with a minimum value of N = 11 to make it more 
secure, as shown in Figure 6 – 3, 1, 2, 4, and Table 2, 
along with online tools used (ENC1, 2022; ENC2, 
2022; ENC3, 2022; ENC4, 2022). Note that LS is 
elaborated on in more detail in its immediate upcoming 
section (Section 3.2). 

Table 2 Shows the selected LS used 

7 3 5 9 2 1 8 4 10 11 6 
1 8 10 3 7 6 2 9 4 5 11 
9 5 7 11 4 3 10 6 1 2 8 
3 10 1 5 9 8 4 11 6 7 2 
8 4 6 10 3 2 9 5 11 1 7 
11 7 9 2 6 5 1 8 3 4 10 
10 6 8 1 5 4 11 7 2 3 9 
5 1 3 7 11 10 6 2 8 9 4 
6 2 4 8 1 11 7 3 9 10 5 
4 11 2 6 10 9 5 1 7 8 3 
2 9 11 4 8 7 3 10 5 6 1 

3.2 Mathematical analysis and proofs of utilising LS 
This subsection aims to show the mathematical complexity 
of how CipherInCipher takes advantage of the hard problem 
of computing a relatively big LS (e.g., n => 11). 

Definition: first of all, LS matrix with a size of N is an  
N × N matrix that has a core property that each symbol S 
occurs only once in each row and column (Laywine and 
Mullen, 1998; Desoky, 2023). An n × n matrix is a LS only 
if it consists of n sets, (e.g., symbols, numbers, letters, a 
combination of all, etc.) arranged in such a way that no 
orthogonal (row or column) contains the same value more 
than one time (Van Lint and Wilson, 1992; Shao, 1992). 
Note that there are special cases of LS such as Latin 
Rectangle and partial LS that retain the same properties of 
LS (Laywine and Mullen, 1998; Dénes and Keedwell, 1991; 
Keedwell and Dénes, 2015; Van Lint and Wilson, 1992; 
Shao, 1992). 

How many LSs are there? Mathematically, there is no easy 
computation method for the number Ln of n × n LSs with 
symbols 1, 2, …, n, as up to date. The most known upper 
and lower bounds assumed for large n are still vague. 
However, van Lint and Wilson stated a classical result that 
is never fully confirmed and is still fuzzy (Laywine and 
Mullen, 1998; Dénes and Keedwell, 1991; Keedwell and 
Dénes, 2015; Van Lint and Wilson, 1992; Shao, 1992). This 
classic result is that: 
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Shao and Wei reached a simple and explicit equation for 
calculating the number of LSs (Van Lint and Wilson, 1992; 
Shao, 1992). However, it is still a hard problem to compute 
because of the exponential increase in the number of terms. 
This equation for the number Ln of n × n LSs is (Van Lint 
and Wilson, 1992; Shao, 1992): 
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where Bn is the set of all n × n {0, 1} matrices, σ0(A) is the 
number of zero entries in matrix A, and per(A) is the 
permanent of matrix A (Laywine and Mullen, 1998; Dénes 
and Keedwell, 1991; Disina et al., 2018; Keedwell and 
Dénes, 2015; Van Lint and Wilson, 1992; Shao, 1992). 

It is worth noting that the online encyclopaedia of 
integer sequences (OEIS) was developed and maintained by 
Neil Sloane during his research at AT&T Labs. Then, it was 
transferred the intellectual property and hosting of the OEIS 
to the OEIS Foundation in 2009 (ENC3, 2022; ENC4, 
2022). Table 3 shows all known exact values of all LSs of 
size n, as referenced via OEIS. It is observed that the 
numbers increase exceptionally rapidly. For instance, the 
number of all LSs registered a dramatic big jump between n 
and n + 1, especially starting when n is equal to 3, 4, 5, 6, 
and so on, as shown in Table 3. It is also observed that the 
number of all LSs holds a relatively very large number from 
n = 6 and so on. Once n reaches a value of 11, the number 
of all LSs becomes a virtual infinity number, as shown in 
Table 3. For each n, the number of LSs altogether (sequence 
A002860 in the OEIS), as shown in Table 3 (Laywine and 
Mullen, 1998; Dénes and Keedwell, 1991; Keedwell and 
Dénes, 2015; Van Lint and Wilson, 1992; Shao, 1992; 
ENC3, 2022; ENC4, 2022). 

The usage of cell sequence in LS can be via a  
column-based, row-based, combination of both rows and 
columns together, and/or random-based, as predetermined. 
This will add more strength to the use of LS. Yet, if the 
usage level is just rows and columns, then, each LS will be 
used twice. Thus, the above large number will be multiplied 
by 2 which will create an extremely larger number than its 
original one. In addition, CipherInCipher can construct LS 
from any random size with a minimum n = 11 along with a 
random set of values that satisfy the properties of LS. 
Moreover, special cases of LS such as Latin Rectangle and 
partial LS can also be utilised by the CipherInCipher system 
which also will add more strength to it. Therefore, the 
prediction, calculation, brute force, and similar ways to 
attack are invisible to be used against CipherInCipher 
because the virtual infinity number of LS makes it 
extremely difficult for an adversary to deal with. For 
example, the task of searching or predicting a key among a 
virtually endless number of keys (e.g., LS used). 

This makes LS with a relatively big n as at least n = 11 
to be very promising in the field of cryptography in general 
and particularly in the presented cryptosystem in this paper, 
as shown in Table 3. 
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Table 3 Shows all LS of size N (sequences a002860 in the OEIS) increases by increasing the value of N 

n 
All Latin squares of size n 

(Sequence A002860 in the OEIS) 

1 1 
2 2 
3 12 
4 576 
5 161, 280 
6 812, 851, 200 
7 61, 479, 419, 904, 000 
8 108, 776, 032, 459, 082, 956, 800 
9 5, 524, 751, 496, 156, 892, 842, 531, 225, 600 
10 9, 982, 437, 658, 213, 039, 871, 725, 064, 756, 920, 320, 000 
11 776, 966, 836, 171, 770, 144, 107, 444, 346, 734, 230, 682, 311, 065, 600, 000 

 
3.3 Keyless 
In this paper, the meaning of a keyless cryptosystem is that 
a user knows neither the actual key used nor its related 
information and there is no option given to users to hold or 
use a key. In this case, a user does not use a key by 
himself/herself to encrypt and/or decrypt. Therefore, it is 
called a keyless cryptosystem. Obviously, in every 
cryptosystem, either a key or something in it acts as a key 
regardless of whether it is key-based or keyless-based. 
Thus, in the CipherInCipher system, there is a use of keys 
but only internally covertly without sharing an actual key 
with any user or its related info. 

In symmetric encryption, users share the use of a single 
key among communicating parties to encrypt and decrypt 
(Koblitz, 1994). On the other hand, in asymmetric 
encryption, each user has his unique pair of keys, a public 
key, and a private key to encrypt and decrypt messages 
(Koblitz, 1994). Conversely, the CipherInCipher system is a 
public keyless system, where users neither hold nor use 
keys by themselves. Therefore, CipherInCipher neither 
shares any key nor any related information to any key with 
any user. CipherInCipher can utilise centralised, 
decentralised, or hybrid centralised keyless management 
among communicating parties. 

3.3.1 Centralised, decentralised, and hybrid 
CipherInCipher system can utilise a centralised, 
decentralised, blockchain, or hybrid (combination of 
centralised and decentralised) keyless management system 
by taking advantage of LS proprieties, e.g., a large number 
of LS for n = 11, etc. to securely handle an LS-based 
keyless system, as discussed before (e.g., Subsection 2.4 in 
Section 2, Subsections 3.1 and 3.2 in Section 3), and as 
follows (Laywine and Mullen, 1998; Dénes and Keedwell, 
1991; Keedwell and Dénes, 2015; Van Lint and Wilson, 
1992; Shao, 1992; ENC3, 2022; ENC4, 2022). 

3.4 Centralised system 
A CipherInCipher centralised system and its all 
functionalities can be fully controlled by an individual, a 
group of people, or an entity like online social applications 
such as Facebook and Twitter (Liu et al., 2022). 

CipherInCipher centralises the key management system 
(KMS) by conveying all its components and concepts such 
as hardware, software, lifecycle management, auditing, 
security, etc. into a central authority that consistently 
handles all issues of the keys (Stennikov et al., 2022). In 
this case, the KMS of CipherInCipher will be called a 
CKMS because it is centralised. 

CipherInCipher utilises LS-based centric key generation 
management internally in a centralised system without 
sharing a key used or its information with any user, as 
explained before. It generates a new LS-based key for each 
time new communication because CipherInCipher does not 
allow the reuse of keys. Thus, it assigns the newly generated 
key to a specific group of users to use it only one time. The 
use of keys covertly and only internally without sharing 
them or their related information with users makes the 
CipherInCipher system a secure keyless system. This avoids 
problematic issues such as phishing attacks, losing keys, 
stealing keys, etc. In this case, the CipherInCipher 
centralised system gains higher performance, faster, and 
more dedication from the concepts of centralisation systems 
like the private blockchain. 

3.5 Decentralised and blockchain system 
A CipherInCipher decentralised system is an interconnected 
system in the form of networked computers rather than just 
a central authority (Kandi et al., 2022). Examples of 
decentralised architecture and systems are blockchain 
technologies such as Bitcoin and Ethereum (Stennikov  
et al., 2022; Kandi et al., 2022). 

CipherInCipher decentralises the key management 
system (DKMS) and utilises and manages LS-based key 
generation to suit the decentralised system, where no central 
authority. Instead, CipherInCipher decentralises the KMS 



230 A. Desoky et al.  

by leveraging the security, resiliency, availability, and 
immutability properties of distributed ledgers to provide 
vastly scalable DKMS (Kandi et al., 2022; ENC3, 2022; 
ENC4, 2022). One of the advantages of CipherInCipher is a 
decentralised LS-based key generation and management 
divides the risks into numerous nodes rather than just a 
single node. Thus, the CipherInCipher decentralised system 
is not vulnerable to a single node failure or attack. In this 
case, the CipherInCipher decentralised system gains the 
proven high security of the decentralisation systems 
concepts like a public blockchain. 

3.6 Hybrid 
In this paper, the CipherInCipher hybrid system is a 
combination of centralised and decentralised systems 
(WEB1, 2022a; Giron et al., 2023; Yu et al., 2015). It 
attempts to take advantage of both centralised and 
decentralised systems by combining similar structures of 
both systems into one structure system, called a hybrid 
system. It is similar to a centralised system from one 
viewpoint and a decentralised system from another (Islam et 
al., 2022; Wan et al., 2014). In some cases, the 
CipherInCipher hybrid system may look more like a 
decentralised system and vice versa depending on how 
much the implementation is leaning toward. In other words, 
more ingredients from either centralised or decentralised 
systems have a designated effect in its final look. 
Nonetheless, CipherInCipher attempts to employ the 
advantages of both centralised and decentralised systems 
and combine them into one system called hybrid (WEB1, 
2022a; Islam et al., 2022). 

Therefore, the CipherInCipher hybrid system gains the 
proven high security of decentralised systems like a public 
blockchain. Unlike the decentralised systems, it also gains 
higher performance, faster, and more dedication from the 
centralised system like the private blockchain. Technically, 
this is done by utilising a centric KMS that handles the key 
generation and managing it as a centralised system. Thus, it 
gains the advantages of a centralised system while gaining 
the advantages of a decentralised system. 

3.7 Honeynet-based fake nodes and users 

• Definition and concept: a honeynet is a decoy network 
or a subnetwork that contains one or more honeypots to 
trap, hunt, investigate, and learn about adversaries’ 
activities to secure the actual network (WEB1, 2022b; 
Tan et al., 2021). It looks like a legitimate network or a 
subnetwork and contains multiple systems or 
subsystems but is hosted on one or only a few servers, 
each representing one environment such as a  
Windows-based honeypot, Mac-based honeypot 
machine, or Linux-based honeypot (WEB1, 2022b). 
Yet, it can also leak false information that fools 
adversaries (WEB1, 2022b; Tan et al., 2021). 

• CipherInCipher: it utilises the concept of the  
honeynet-based system by employing fake nodes and 

users forming its honeypot(s) to fool adversaries and to 
keep all legitimate nodes and users safe and away from 
attacks as much as possible. Therefore, CipherInCipher 
creates a fake super node or number of fake super 
nodes and each one operates as a legitimate super node 
to fool an adversary. Additionally, it creates a fake 
regular node or number of regular nodes and each one 
operates as a legitimate regular node to fool an 
adversary. Fake nodes are involved in a process 
honeynet-based node. This will consume adversaries’ 
resources distract adversaries and keep them away from 
the legitimate nodes. Fake nodes when acting as a 
honeynet allow studying adversaries’ motives, 
techniques, etc. and any vulnerabilities that may exist to 
be fixed. Intentionally, it leaks false information in a 
convincing way that fools adversaries to keep the actual 
network safe. 

3.8 Cognitive artificial intelligence and machine 
learning based cryptanalysis 

In cryptanalysis, a cryptanalyst attempts to attack a real 
ciphertext to reveal a confidential message through the 
analysis and detection of hidden patterns in the ciphertext or 
predicting a secret key used. Our proposed cryptosystem is 
keyless and the actual ciphertext is invisible, as explained in 
detail before. As a result, this technique is secure by default. 
Recently, attackers used the recent cognitive artificial 
intelligence and machine learning (AI/ML) techniques to 
automatically discover confidential information in the 
ciphertext (Ahmadzadeh et al., 2022). To assure more 
robustness, CipherInCipher exploits cognitive AI/ML 
techniques to play the role of a cryptanalyst on the 
generated ciphertext to ensure the robustness of the 
generated cipher (Kim et al., 2023a). 

There are potential roles that AI could play in the 
context of keyless ciphertext: 

1 Designing algorithms: AI methods, such as 
evolutionary algorithms and neural networks, can be 
utilised to investigate and enhance encryption 
algorithms that do not rely on conventional keys. 
Researchers can leverage AI’s pattern recognition 
capabilities to develop new encryption systems that use 
alternative techniques for secure communication. 

2 Evaluating security: AI can be employed to assess the 
security of keyless encryption systems. Machine 
Learning models can analyse various keyless ciphertext 
strategies, identify weaknesses, and offer suggestions to 
improve security using AI-driven techniques. 

3 Cryptanalysis: AI can assist in deciphering and 
analysing keyless encryption protocols. By training 
Machine Learning models on large datasets of 
encrypted data, patterns can be uncovered, potential 
flaws in encryption algorithms can be identified, and 
methods to decipher ciphertext without traditional keys 
may be discovered. 
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CipherInCipher inspects its generated ciphertext in the three 
phases to approve or disapprove the use of its outputs (e.g., 
false ciphertext, real ciphertext, and final ciphertext). In 
case of CipherInCipher system disapproves its ciphertext of 
any phases; CipherInCipher will redo the phase of the 
disapproved ciphertext to regenerate another ciphertext that 
will pass its inspection. 

Many adversarial attacks could break the security of a 
ciphertext including (Luo and Chen, 2020; Baksi and Baksi, 
2022; Tolba et al., 2022). To be robust against possible 
adversarial attacks, the CipherInCipher system attacks its 
own generated cyphertext to ensure it is secure before 
sending it to the legitimate recipient. As a result, 
CipherInCipher takes precautionary steps to prevent 
failures, and this is done intelligently and automatically 
using advanced cognitive AI/ML techniques such as 
residual connections and gated linear units. The problem is 
formulated as a Ciphertext classification task that learns the 
text using different machine learning, statistics, 
computational linguistics, information retrieval, and deep 
learning techniques. There are many applications of AI/ML 
in cryptanalysis (Andonov et al., 2020; Lagerhjelm, 2018; 
Kim et al., 2023b). Recently, different deep learning 
architectures have been proposed to optimise this task (Shin 
et al., 2020; Abd and Al-Janabi, 2019; Luthra and Pal, 
2011). Different deep learning models have been used in 
cryptanalysis such as convolutional neural network (CNN) 
models have proved their capabilities in image analysis. 
CNN has been used in ciphertext analysis (Luthra and Pal, 
2011; Alom et al., 2019), long short-term memory (LSTM), 
recurrent neural network (RNN), and gated recurrent unit 
(GRU) (Kumari et al., 2021; Rundo, 2020). While 
traditional cryptanalysis focuses on extracting the key to 
achieve success in deciphering ciphertexts, neural 
cryptanalysis aims to predict ciphertexts without prior 
knowledge of the key. In traditional cryptanalysis, a delicate 
human mathematical analysis is conducted to determine 
how the key value affects the statistics of  
plaintext-ciphertext pairs. The training data for neural 
cryptanalysis consists of pairs of plaintext and ciphertext, 
and the objective is to predict ciphertexts based on inputted 
plaintexts. This task is symmetric to predicting plaintexts 
from ciphertexts, as encryption and decryption are 
reversible processes. There have been only a few attempts 
to apply neural networks in the field of cryptography. In 
1998, Clark (1998) introduced a neural network-based 
cryptography system, and in 2005, Kanter (2002) presented 
a method of using neural networks for secret key exchange 
via a public channel. Another proposal by Rao (2009) 
involved the use of a right-sigmoidal function as an 
activation function in a neural network for cryptanalysis of 
Feistel-type ciphers, but it did not yield any significant 
results. Measuring the strength of a cipher was explored by 
Xiao (2019), where the difficulty of replicating the cipher 
algorithm using a neural network was used as a metric. 
Additional metrics like cipher match rate, training data 
complexity, and training time complexity were introduced 
to numerically express cipher strength, enabling direct 

comparisons between different ciphers. The experimental 
approach involved fully connected neural networks with 
multiple parallel binary classifiers at the output layer. 

However, the ciphertext sequence is decorrelated from 
the plaintext sequence. As a result, discriminative features 
between different categories are difficult to detect and 
require a deep understanding of the context (Rundo, 2020; 
Livieris et al., 2021). Other advanced deep learning 
techniques like bidirectional LSTM and transformers with 
attention mechanisms have a higher capacity to detect long 
dependencies to better understand the context (Livieris  
et al., 2021; Johnson and Zhang, 2016). We explore  
state-of-the-art machine learning and deep learning for 
detecting and highlighting the weakness of the generated 
cipher (Ahmadzadeh et al., 2022). 

In addition, advanced ML and DL architectures such as 
ensemble DL models are proposed to enhance the  
state-of-the-art performance in measuring the quality of the 
cipher text and detecting the possible vulnerabilities. 
Different from plaintext learning, ML/DL must meet 
different criteria for efficient ciphertext interference. 
Language models like CNNs, long-short-term memory, and 
transformers are used to design high-performing and 
efficient models for ciphertext robustness evaluation. These 
models are extended using semantic and ontology 
knowledge to improve the interference power. Different 
hybridisation, optimisation (e.g., hyperparameters, 
architectures, and feature selection), and interpretability 
techniques are explored to improve the performance and 
explainability of the resulting model. 

Note that ML/DL algorithms can be used in other steps 
in the proposed model to enhance its robustness and 
automation. For example, they can be used to determine the 
sensitive information in the plaintext input to phase 2. In 
addition, it can be used at the destination to detect possible 
attacks on the received messages. They can be used to 
generate random text that can be used as input to phase 1. 
ML/DL models can be optimised to generate ciphertext in 
the three steps. There is great potential for the application of 
AI/ML in the proposed architecture to prove its 
performance, robustness, and automation. 

4 Security validation 
This section aims to demonstrate the security validation, 
cryptoanalysis, and several cryptographic and cybersecurity 
attacks against the CipherInCipher system. The purpose is 
to show the distinct robustness capability of the 
CipherInCipher system in achieving the security and 
cryptographic goal, as follows. 

4.1 Statistical signature 
In this paper, a statistical signature and analysis refer to the 
pattern, fingerprint, profile, characters’ frequency, etc. of 
ciphertext (Kim et al., 2023a; Siegenthaler, 1985; Li and 
Zhang, 2022). Numerically, a statistical signature is the 
number of times characters appear on average in a particular 
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type of ciphertext (Kim et al., 2023a). Unlike the letters’ 
frequency of a particular normal language, characters’ 
frequency may contain more than just alphabetic letters and 
numerical values, like special symbols, etc. The frequency 
of characters and their plotted graph may vary from one 
type of ciphertext to another. 

In CipherInCipher, the generated ciphertext is protected 
from such an attack because the actual ciphertext is 
embedded into a relatively large fake ciphertext. An actual 
ciphertext is a subset of the fake ciphertext. The size of an 
actual ciphertext is minimal compared to the size of its false 
ciphertext. Therefore, a statistical signature will mainly 
represent a false ciphertext used rather than its embedded 
actual ciphertext. Furthermore, the procedures in phases 1 
and 2 of the CipherInCipher system kill any statistical 
signatures of any type of ciphertext used due to the use of 
several cryptosystems and the alteration procedures. Thus, it 
is infeasible for an adversary to accomplish a successful 
attack via statistical signatures against the CipherInCipher 
system. 

4.2 Known-plaintext analysis (KPA) 
In a KPA attack, an adversary attempts to obtain some 
known plaintext-ciphertext pairs to hack them to conclude a 
cryptographic key used (Li and Zhang, 2022; Nakano and 
Suzuki, 2022; Nakano et al., 2014). An adversary prevails if 
a KPA attack results in concluding the cryptographic key 
used. The strength of this attack may vary from one 
cryptographic approach to another and from an amount of 
available information to another. The availability of an 
adequate amount of information plays a major role in easing 
the KPA attack (Nakano et al., 2014). 

Unlike all cryptosystems, in the CipherInCipher an 
actual ciphertext is not available to an adversary because 
CipherInCipher conceals an actual ciphertext in one or 
several false ciphertexts. Only, the false ciphertext may be 
available to an adversary. Additionally, the CipherInCipher 
system generates a new key for each time of communication 
and does not reuse the key more than once. Therefore, even 
if an adversary concludes a key used, is infeasible, still 
cannot be counted as a big victory. The reason is that a 
hacked-key cannot be reused to decrypt any future 
ciphertext due to the expiration of a key once it is used. This 
is because the applied policy of CipherInCipher is that a 
newly generated key only for new communication is to be 
used only one time and expires once used. 

4.3 Chosen-plaintext analysis (CPA) 
A CPA attack is based on the assumption that an adversary 
is capable of making a successful attempt to correspond 
ciphertexts to the selected arbitrary plaintexts or vice versa, 
and then, an adversary makes all practical and scientific 
efforts attempting to find the cryptographic key used 
(Anderson, 2020; Barrera et al., 2010; Rao and Cui, 2022). 
The practicality of the CPA attack is questionable and the 
probability of prevailing in exploiting a CPA attack is quite 
low according to its low rate of success (Anderson, 2020; 

Barrera et al., 2010; Rao and Cui, 2022). One of the goals of 
this attack is to gain more information about a particular 
cryptosystem to at least reduce its strength to make it 
vulnerable and insecure. 

Unlike all obscurity-based technologies, CipherInCipher 
is a public-based approach that does not depend on the 
secrecy of any of its related components. CipherInCipher is 
resiliently secure under the assumption that an adversary 
has full information about CipherInCipher. Therefore, an 
adversary that applies a CPA attack and collects information 
about CipherInCipher as much as possible does not degrade 
its security. A CPA attack requires that an adversary be 
capable of corresponding ciphertexts to the selected 
arbitrary plaintexts or vice versa. This is not feasible at all 
when using CipherInCipher because the actual ciphertext is 
not available to an adversary. The only ciphertext that may 
be available to an adversary is the false ciphertext. 

4.4 Ciphertext-only analysis (COA) 
In cryptanalysis, a COA is based on the assumption that an 
adversary has only ciphertext due to his passive capability 
to eavesdrop and intercept communicating parties, etc. 
(Biryukov and Kushilevitz, 1998; Liao et al., 2021). The 
attacker only knows ciphertexts but not the corresponding 
plaintexts. However, an adversary with the capability to 
eavesdrop, intercept communication, etc. most likely has 
some advanced expert knowledge and tools that are not 
available to ordinary people. Some of the trivial information 
such as the language of plaintext that is concealed in the 
ciphertext and statistical signatures, etc. (Biryukov and 
Kushilevitz, 1998; Liao et al., 2021; Al-Shareeda and 
Manickam, 2022). 

Unlike all cryptosystems, in the CipherInCipher an 
actual ciphertext is concealed in one or numerous false 
ciphertexts. In other words, the procedures of 
eavesdropping, intercepting, etc. are not capable of 
revealing the actual ciphertexts because as we explained 
before the actual ciphertexts are invisible since they are 
camouflaged in false ciphertexts. An adversary first has to 
find and collect all tiny pieces and bits of actual ciphertexts 
in a correct sequence and then, work on the actual ciphertext 
to decipher it. This is infeasible in our case since this is an 
extremely hard and very tedious operation if it is not 
impossible. In general, a COA attack is extremely hard and 
has a low rate of success. In addition, the applied policy of 
CipherInCipher key-expiration, once a key is used, does not 
allow an adversary to reuse a key if the key is successfully 
hacked. 

4.5 Man-in-the-middle (MITM) 
In network security, a MITM, as the linguistic meaning of 
its name, is an attack where an adversary is capable of 
getting between communicating parties impersonating a 
legitimate one and communicating via new messages or 
altering victims’ communication (Fisher and Valenta, 2019; 
Fassl, 2018). It means an adversary must be able to encrypt, 
decrypt, and pass an authentication procedure as well 
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(Biryukov and Kushilevitz, 1998; Fisher and Valenta, 2019; 
Fassl, 2018). 

In CipherInCipher, an MITM attack is inapplicable 
because it is not feasible that an adversary will encrypt, 
decrypt, and continue using a security key, as discussed 
before. First, the actual ciphertext is invisible to an 
adversary. Second, CipherInCipher is a keyless 
cryptosystem where the users do not use keys. This makes 
CipherInCipher immune from stealing key activities. 

4.6 Adaptive chosen-plaintext analysis (ACPA) 
An ACPA attack is like the CPA with the assumption that 
an adversary has access to an actual cryptosystem (Hu et al., 
2014; Bard, 2006, 2007). This attack is very strong if all its 
requirements are satisfied. However, if an ACPA attack 
occurs successfully, it means, most likely there is an internal 
leakage and/or compromise such as an internal attack. 

CipherInCipher achieves a high level of security that 
protects confidential information by concealing it in an 
invisible strong ciphertext which makes it infeasible for an 
adversary to even obtain an actual ciphertext. Yet, it utilises 
the concept of honeynet-based technology by employing 
fake nodes and users to form its honeypot(s) that fool 
adversaries and keep all legitimate nodes and users’ safe 
and away from harm’s way of cyberattacks as much as 
possible. Therefore, even with an internal leakage or 
compromise, our proposed system will still resist such 
circumstances. 

4.7 Internal attack 
One of the most severe attacks is the internal attack because 
an adversary, in this case, is a legitimate member of the 
organisation (Kalinin and Skvortsov, 2021). Thus, an 
internal attacker can have confidential information about the 
organisation and access to its hardware, software, and 
information, which can easily be used against the 
organisation to harm it than an external attack (Kalinin and 
Skvortsov, 2021). 

Unlike all contemporary cryptography techniques 
including obscurity, CipherInCipher is a public approach 
that does not depend on the secrecy of any of its 
components and makes its actual ciphertext indiscernible to 
an adversary. This prevents an adversary from even 
obtaining the actual ciphertext which is essential for any 
attack to prevail. 

Furthermore, CipherInCipher utilises the concept of 
honeynet-based technology, as discussed in Subsection 3.7 
of Section 3, by employing fake nodes and users to form its 
honeypot(s) that fools adversaries and keep all legitimate 
nodes and users safe and away from harm’s way of 
cyberattacks as much as possible (WEB1, 2022b; Tan et al., 
2021). Therefore, even if an internal leakage or compromise 
occurs, it will still resist under such circumstances. This 
contributes to the security of CipherInCipher if an internal 
attack occurs because it can fool an adversary. In case of big 
security breaches such as severe leakage or even sending an 
entire copy of the actual CipherInCipher system to an 

adversary, it will still resist. This is because the actual 
CipherInCipher system contains false information and fake 
nodes and users that look legitimate to adversaries due to 
the utilisation of honeynet-based technology to fool an 
adversary as planned, as discussed before. Table 4 
concludes a summary and comparison of all presented 
mentioned attacks. 

Table 4 Summary and comparison of all presented attacks 

Cryptosystem type 
→ Symmetric Asymmetric CipherInCipher 

Attack ↓ /  
Output → 

Actual 
ciphertext 

Actual 
ciphertext 

Overall 
false/fake 
ciphertext 

Statistical 
signature 

Feasible Feasible Infeasible 

Known-plaintext 
analysis (KPA) 

Feasible Feasible Infeasible 

Chosen-plaintext 
analysis (CPA) 

Feasible Feasible Infeasible 

Ciphertext-only 
analysis (COA) 

Feasible Feasible Infeasible 

Man-in-the-
middle (MITM) 

Feasible Feasible Infeasible 

Adaptive chosen-
plaintext analysis 
(ACPA) 

Feasible Feasible Infeasible 

Internal attack Feasible Feasible Infeasible 
Brute force attack Feasible Feasible Infeasible 

4.8 CipherInCipher vs. steganography 
Steganography is the science and art of camouflaging the 
presence of covert communications (Desoky, 2012). 
Fundamentally, the steganographic goal is not to hinder an 
adversary from decoding a hidden message, but to prevent 
an adversary from suspecting the existence of covert 
communications (Desoky, 2012). When using any 
steganographic technique if suspicion is raised, the goal of 
steganography is defeated regardless of whether or not a 
plaintext is revealed (Desoky, 2012). 

Contemporary steganography approaches are often 
classified based on the steganographic cover type into 
image, audio, graph (Munir et al., 2022), or text. Textual 
steganography can be linguistic and non-linguistic. When 
linguistics is employed for hiding data and generating the 
steganographic cover, an approach is usually categorised as 
linguistic steganography to distinguish it from non-
linguistic techniques, e.g., image, audio, graph, and text 
non-linguistic based. A text non-linguistic-based does not 
follow any structure and grammar rules of human language 
like URL-based Steganography. Therefore, the 
steganographic cover must look innocent to an adversary. 

Conversely, cryptography is the science and art of 
encoding confidential data and information in an unreadable 
format called ciphertext (Stallings, 2019; Koblitz, 1994). A 
ciphertext should not be decryptable to its plaintext by an 
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unauthorised user. Unlike a steganographic cover, a 
ciphertext advertises the fact that a valuable set of data or 
information is concealed. Therefore, a secure ciphertext 
depends on the strength of its cryptosystem that prevents an 
adversary from decrypting its ciphertext. 

Fundamentally, the steganographic goal is not to hinder 
the adversary from decoding a hidden message, but to 
prevent an adversary from suspecting the existence of 
covert communications (Desoky, 2012). The set of 
challenges in the steganography area is not in the 
CipherInCipher approach where the goal is also different. 
CipherInCipher like any other cryptographic approach 
produces ciphertext that advertises the concealment of 
secrets. 

It is worth noting that an embedding procedure of a 
message in a steganographic cover is a big challenge 
because it must look innocent to an adversary to avoid 
raising suspicion. However, in CipherInCipher the 
embedding procedure of ciphertext in another ciphertext, as 
explained before, is not a major concern like in 
steganography. This is because steganography avoids any 
illegible format that may raise suspicion, while any 
cyphertext is already an illegible format by its nature. 
Therefore, hiding ciphertext in another ciphertext is 
relatively easier than hiding it in a steganographic cover 
(Munir et al., 2022). Furthermore, the low bitrate in 
steganography is a major concern because increasing 
steganography bitrate most likely raises suspicion which 
will defeat the purpose of a steganographic approach 
(Desoky, 2012). Conversely, a bitrate in the CipherInCipher 
can vary from one implementation to another. However, the 
CipherInCipher bitrate most likely be higher than the 
steganographic bitrate. This is due to the severe sensitivity 
of steganographic cover for increasing a bitrate. On the 
other hand, CipherInCipher is relatively insensitive to 
increasing bitrate issues compared to steganography. It is 
due to the nature of CipherInCipher which conceals 
messages in an illegible format like ciphertext rather than a 
legible format like normal text. Thus, CipherInCipher along 
with all other validations and reasons that are stated before 
in this paper is a very promising approach for securing 
information and data whether in the static or the 
transmission stage. 

5 Conclusions 
In this paper, we presented the architecture and validation of 
a novel paradigm shift cryptosystem, namely 
CipherInCipher, based on a relatively large LS for 
blockchain and covert communications demonstrating the 
robust capabilities of achieving the cryptographic and 
security goal. Unlike all contemporary techniques including 
obscurity, CipherInCipher is a public-based approach that 
does not depend on the secrecy of any of its related 
components. It attains a high level of security that protects 
private information, data, or both not only by generating 
strong ciphertext but also by preventing an adversary from 
even obtaining the actual ciphertext by concealing it in a 

false ciphertext. CipherInCipher gives legitimate users the 
option to operate in triple modes symmetric, asymmetric, 
and hybrid encryption for the actual ciphertext. In addition, 
the CipherInCipher system is keyless for the main 
ciphertext that conceals an actual ciphertext. We presented 
the architecture, implementation, and validation of the 
approach to illustrate this promising approach for securing 
information and data whether in the static or the 
transmission stage. 

The future work of this research should focus on 
applying the proposed approach to a large number of 
different domains such as the medical and financial 
application domains. These applications would use different 
sets of data types such as graphs, images, and audio files 
including big data sets and different application systems. 
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