

International Journal of Applied Cryptography

ISSN online: 1753-0571 - ISSN print: 1753-0563
https://www.inderscience.com/ijact

A novel keyless cryptosystem based on Latin square and
cognitive artificial intelligence for blockchain and covert
communications

Abdelrahman Desoky, Hany Ammar, Gamal Fahmy, Shaker El-Sappagh, Abdeltawab
Hendawi, Sameh Hassanien Basha

DOI: 10.1504/IJACT.2024.10062638

Article History:
Received: 21 August 2023
Last revised: 25 November 2023
Accepted: 30 December 2023
Published online: 03 May 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijact
https://dx.doi.org/10.1504/IJACT.2024.10062638
http://www.tcpdf.org

Int. J. Applied Cryptography, Vol. 4, Nos. 3/4, 2023 219

Copyright © 2023 Inderscience Enterprises Ltd.

A novel keyless cryptosystem based on Latin
square and cognitive artificial intelligence for
blockchain and covert communications

Abdelrahman Desoky*
Scired: Scientific Research and Development Corporation,
South Carolina, USA
and
Department of Computer Science,
Claflin University, USA
Email: desoky@desoky.com
*Corresponding author

Hany Ammar, Gamal Fahmy and
Shaker El-Sappagh
Faculty of Computer Science and Engineering,
Galala University, Egypt
Email: hany.ammar@gu.edu.eg
Email: gamal.fahmy@gu.edu.eg
Email: shaker.el-sappagh@gu.edu.eg

Abdeltawab Hendawi
Computer Science Department,
University of Rhode Island, USA
Email: hendawi@uri.edu

Sameh Hassanien Basha
Faculty of Science,
Cairo University,
Giza, Egypt
Email: samehbasha@cu.edu.eg
and
Faculty of Science,
Galala University,
Suez, Egypt
Email: samehbasha@gu.edu.eg

Abstract: The recent advances in cryptanalysis techniques and the leakage of information about
the cryptosystem used are major threats to information systems. An adversary may succeed in
decrypting ciphertexts, while users of a particular cryptosystem unknowingly continue using the
compromised cryptosystem. Therefore, this paper presents a novel cryptosystem based on Latin
square and cognitive AI/ML for blockchain and covert communications. This cryptosystem is
capable of operating in quadruple modes keyless, symmetric, asymmetric, and hybrid encryption
to cipher in cipher, and hence we call it CipherInCipher. Unlike all contemporary techniques
including obscurity, CipherInCipher is a public-based approach that does not depend on the
secrecy of any of its related components. It attains a high level of security that protects private
information not only by having strong ciphertext but also by preventing an adversary from
obtaining the actual ciphertext. The presented validation study demonstrates the robust
CipherInCipher capabilities of achieving the cryptographic goal.

Keywords: cryptography; cryptosystem; cipher; ciphertext; security; secure communications;
covert communications; blockchain.

Reference to this paper should be made as follows: Desoky, A., Ammar, H., Fahmy, G.,
El-Sappagh, S., Hendawi, A. and Basha, S.H. (2023) ‘A novel keyless cryptosystem based on
Latin square and cognitive artificial intelligence for blockchain and covert communications’,
Int. J. Applied Cryptography, Vol. 4, Nos. 3/4, pp.219–237.

220 A. Desoky et al.

Biographical notes: Abdelrahman Desoky is the CEO/Founder of Scired: Scientific Research
and Development, and he is also an Associate Professor in the Department of Computer Science,
at Claflin University. He has more than 20 years of experience in computer science/engineering,
security, and related areas in both academia/industry. He was a visiting scholar at the University
of California, Berkeley (2022). He received his Master of Science degree from George
Washington University (2004) and Doctoral degree from the University of Maryland, Baltimore
County (2009); both degrees in Computer Engineering. He is the author of a security book
entitled Noiseless Steganography: The Key to Covert Communications.

Hany Ammar is a Professor of Computer Science and Engineering at Galala University, Egypt,
and Professor Emeritus in the Lane Department of Computer Science and Electrical Engineering
at West Virginia University, USA. His research interests are in software engineering and
identification technology. He published more than 200 articles in prestigious international
journals and conference proceedings. He served as the Lead PI and Co-PI in research projects
funded by the US NASA, US NSF, US NIJ, and Qatar National Research Fund (QNRF). He has
been teaching in the areas of software engineering and computer architecture since 1985.

Gamal Fahmy received his PhD in Electrical Engineering from Arizona State University, Tempe,
USA in 2003. From 2003 to 2005, he was a Research Assistant Professor at West Virginia
University, where he worked on several biometric identification and recognition projects; from
2006 to 2012, he was with the German University in Cairo and an annual summer senior
researcher at the Institute of Image and Computer Vision at RWTH Aachen, Germany. He won
the Egypt National State Award in Engineering Sciences 2012–2013. His research interests
include image super-resolution, computer vision, biometric identification, and image forensics.

Shaker El-Sappagh received his PhD in Computer Science from the Information Systems
Department, Faculty of Computers and Information, Mansura University, Mansura, Egypt in
2015. He worked as a Research Professor at UWB Wireless Communications Research Centre in
the Department of Information and Communication Engineering at Inha University, South Korea
for three years (2018–2020). He worked as a Research Professor at Universidade de Santiago de
Compostela, Spain for one year (2021). Currently, he is an Associate Professor at Galala
University, Egypt since 2021. He is a senior researcher at the College of Computing and
Informatics, Sungkyunkwan University, South Korea since 2021.

Abdeltawab Hendawi is an Assistant Computer Science and Data Science Professor at the
University of Rhode Island (URI). He is the Co-director of the AI-Lab at URI. He received his
PhD in Computer Science from the University of Minnesota (UMN) in 2015. His research
interests are centred on big data and AI, focusing on smart cities and smart health-related
applications.

Sameh Hassanien Basha is a computational scientist with a PhD and Master’s degrees from Cairo
University, Egypt, specialises in machine learning, statistical methods, and optimisation
techniques. His research centres on soft computing applications for handling imprecise data,
utilising methods like the wavelet technique and developing neutrosophic rule-based systems
(NRBS). In his PhD thesis, he introduced an evolutionary learning process to automate NRBS
design, addressing their limitation in learning. His work extends to creating a hybrid system
combining genetic algorithms and NRBS for genetic learning and knowledge base optimisation.
His overarching research goal is advancing soft computing methods and machine learning
algorithms.

This paper is a revised and expanded version of a paper entitled ‘Latin square and artificial
intelligence cryptography for blockchain and centralized systems’ presented at the 9th
International Conference on Advanced Intelligent Systems and Informatics (AISI2023), Springer,
Port Said, Egypt, 20–22 September 2023.

1 Introduction and related work
Cryptography or cryptology is the science and art of
concealing information, data, or both in an illegible format
called ciphertext (Desoky et al., 2023; NIST1, 2022; NIST2,
2022). A ciphertext must be reversible back to its plaintext
by only an authorised user via an operation called
decryption (NIST3, 2022; Wade and Gill, 2022).
Practically, the cryptographic goal is to avert an adversary

from decrypting a ciphertext by generating a strong
ciphertext. This can be done by utilising a strong algorithm
that may include techniques and mathematical operations,
etc. to generate a resilient ciphertext (Habib et al., 2022).

On the contrary, cryptanalysis is the science and art of
contributing to breaching a cryptosystem to eventually
decrypt its ciphertext (NIST4, 2022). This may be achieved,
even if a cryptosystem is unknown, via studying whatever is
available to start from such as ciphertext, some predicted or

 A novel keyless cryptosystem based on Latin square and cognitive artificial intelligence for blockchain 221

leaked information about a cryptosystem used (NIST5,
2022; Munir et al., 2022). Cryptanalysis may employ other
techniques, tools, and applications such as math, statistics,
arithmetic, reverse engineering, artificial intelligence,
algorithms, hardware and software applications, etc. to
perform its task (NIST5, 2022; Munir et al., 2022).

Yearly, the number of cybersecurity attacks is
increasing worldwide (GAO, 2022; ALERT, 2022; DHS1,
2022; Security, 2022). Yet, with the current political tension
and conflicts between countries worldwide, some
cybersecurity attacks are directly done by governments or
their supporters (DHS1, 2022; Security, 2022; DHS2,
2022). Once a government promotes attack(s), a virtually
endless resource gets involved for a cybersecurity attack
and cryptanalysis to decipher ciphertext to get valuable data
and information.

Thus, tremendous dedication, obsession, and efforts
motivate the recent advances in cryptanalysis techniques
and the progressive leak of information about cryptosystems
used are significant threats to cryptography (ALERT, 2022;
DHS1, 2022; Security, 2022). Yet, an adversary may
succeed in decrypting ciphertexts, while users of a particular
cryptosystem unknowingly continue to use a compromised
cryptosystem.

Contemporary cryptography approaches are mainly
categorised into two types, symmetrical and asymmetrical
key cryptography (Stallings, 2019; Koblitz, 1994).
Symmetric key cryptography primarily refers to particular
encryption techniques in which a legitimate communicating
party shares the same secret key for encrypting and
decrypting (Stallings, 2019; Koblitz, 1994). Asymmetric
key cryptography such as a public key cryptosystem uses a
pair of keys: a shared public key and an unshared private
key (Stallings, 2019; Koblitz, 1994). Unlike symmetrical
key encryption, a public key is shared and distributed
publicly for anyone to use which resolves the key
distribution problem (Stallings, 2019; Koblitz, 1994).

Some additional concerns of contemporary
cryptography approaches may be summarised as follows.
Most contemporary cryptography approaches have been
used for a long time and this by itself is risky regardless of
the name and type of any cryptosystem (Koblitz, 1994;
COMPW, 2022). This is because every cryptosystem has its
own life cycle time. Theoretically, the longer it is used the
higher the probability of being breached because adversaries
and researchers will have a good long time to contribute to
breaching a cryptosystem (Koblitz, 1994). In addition, over
time scientific research, applications, tools, software
applications, computer systems, scientists, experts, and
adversaries become more advanced and can contribute to
breaching a secure cryptosystem. Yet, all users of
contemporary cryptography approaches must use
cryptographic keys regardless of the type of cryptosystem
used. Moreover, the increasing number of phishing attacks
and loss of key incidents became additional threats and
vulnerabilities to contemporary cryptosystems too (DHS3,
2022).

The above issues led us to develop and present in this
paper a novel cryptosystem based on Latin
Square (LS) to Cipher In Cipher (CipherInCipher). Our
proposed cryptosystem is for blockchain and covert
communications capable of operating in quadruple modes
keyless, symmetric, asymmetric, and hybrid encryption.
Unlike all contemporary techniques including obscurity,
CipherInCipher is a public-based approach that does not
depend on the secrecy of any of its related components. It
attains a high level of security that protects private
information not only by having strong ciphertext but also by
preventing an adversary from obtaining the actual
ciphertext. The presented validation demonstrates the robust
capabilities of achieving the cryptographic goal.

The remainder of this paper is organised as follows.
Section 2 presents the CipherInCipher architecture.
Section 3 demonstrates the implementation and the general
validation of the proposed architecture. Section 4 discusses
security validation and possible attacks. Finally, Section 5
concludes the paper.

2 CipherInCipher
To illustrate CipherInCipher, let us consider the following
scenario. Bob and Alice work for a high-tech company,
which involves a high level of security to protect sensitive
information about new inventions and new products because
of recent cyberattacks (ALERT, 2022). They considered the
worst-case scenario where an adversary may be capable of
decrypting all contemporary ciphertexts. Therefore, the
CipherInCipher cryptosystem is selected to be utilised for
this mission. This is because CipherInCipher is resiliently
secure under the unfortunate assumption that an adversary is
capable of breaking all contemporary cryptography
algorithms. CipherInCipher attains a high level of security
that protects private information not only by having strong
ciphertext but also by making the actual ciphertext invisible
to an adversary. When using CipherInCipher, the only full
ciphertext that is normally visible to an adversary is a false
ciphertext. This false ciphertext is either an unwanted
cyphertext that conceals non-sensitive information or a fake
ciphertext, but it is not the pure actual ciphertext. However,
when using CipherInCipher a pure actual ciphertext is
shredded into different sizes and it embeds it into either one
relatively large false ciphertext or multiple relatively large
false ciphertexts.

Note that the shredding and embedding procedures are
done in such a sophisticated way based on a relatively large
LS to make it more secure and to be extremely hard, if not
impossible, for an adversary to reveal a plaintext (Laywine
and Mullen, 1998; Dénes and Keedwell, 1991; Keedwell
and Dénes, 2015).

Concisely, the CipherInCipher algorithm is achieved
through three main phases as follows. First, CipherInCipher
generates false ciphertext(s) by either legitimate ciphertext
of unwanted plaintext or fake ciphertext. Second, it encrypts
the intended message via symmetric, asymmetric, or hybrid
encryption, as per user choice. Third, it embeds the

222 A. Desoky et al.

encrypted message from phase 2 into the generated
ciphertext from phase 1. Note that the embedding procedure
is done according to a predetermined algorithm based on a
relatively large LS with a minimum value of N = 11 to make
it much more secure (Laywine and Mullen, 1998; Dénes
and Keedwell, 1991).

It is worth noting that CipherInCipher gives legitimate
users the option to operate in quadruple modes
keyless, symmetric, asymmetric, and hybrid encryption by
utilising a contemporary cryptography algorithm to secure
communications, data, etc. as per users’ choice in
configuring its setup. One may say if we use a
contemporary cryptography algorithm, why do we need to
use CipherInCipher? The answer in short, as stated earlier
CipherInCipher makes an actual ciphertext invisible to an
adversary, as demonstrated and discussed in detail in the
upcoming sections.

The presented cryptosystem architecture,
implementation, and validation demonstrate the robustness
capabilities of achieving the cryptographic goal, and the
adequate room to achieve a high bitrate for concealing
actual ciphertexts in false ciphertexts.

The following sections will discuss in more detail how
each phase, procedure, and algorithm is done. Thus, the next
section gives an overview of the CipherInCipher
architecture.

2.1 The CipherInCipher architecture
The scenario of Bob and Alice in Section 2 demonstrates
how the CipherInCipher paradigm can be utilised. This
subsection will present a high level overview of the overall
core architecture of the CipherInCipher system and how it
achieves the security goal. We then present the detailed
components of the architecture in the following subsections.
Note that the implementation of the CipherInCipher system
may differ from one implementation to another. Therefore,
the following presents an overview of the main core options
of the CipherInCipher algorithm and its architecture.

Architecturally, the CipherInCipher system consists of three
main phases, as shown in Figures 1, 2, and 3 along with
Table 1 and the pseudocode in Algorithm 1. These three
main phases are as follows:

• Phase 1: CipherInCipher-based system generates
false ciphertext by creating either a legitimate
ciphertext of unwanted message/plaintext or fake
ciphertext, as shown in Figures 1 and 2 and will be
described in detail in Subsection 2.2 using Table 1 and
the pseudocode in Algorithm 1. After ciphering the
fake text, CipherInCipher uses a cognitive AI/ML
model/system cryptoanalysis-based, internally, to
ensure the robustness of the resulting ciphertext.

• Phase 2: CipherInCipher encrypts the intended
message via symmetric, asymmetric, or hybrid
encryption, as per user choice and its setup, as shown in
Figures 1 and 2. This is done by using a contemporary
cryptographic algorithm. This phase will be described
further in Subsection 2.3. After ciphering of the
sensitive text, CipherInCipher uses a cognitive AI/ML
model/system cryptoanalysis-based, internally, to
ensure the robustness of the resulting ciphertext.

• Phase 3: CipherInCipher embeds the encrypted
message from phase 2 into the generated ciphertext
from phase 1. Note that the embedding procedure is
done according to a predetermined algorithm based on
a relatively large LS with a minimum value of N = 11
to make it much more secure, as shown, mainly, in
Figure 3 along with related Figures 1 and 2. This phase
is described further in Subsection 2.4. After performing
the embedding procedure of the legitimate ciphertext
inside the false/fake ciphertext, CipherInCipher uses a
cognitive AI/ML model/system cryptoanalysis-based,
internally, to ensure the robustness of the resulting final
ciphertext before it is used in covert communications.

Figure 1 Illustrates the architecture and the utilisation of CipherInCipher (see online version for colours)

Notes: It shows the interaction of all phases 1, 2, and 3 with each other. Then, it shows the utilisation of the CipherInCipher

system by the communication parties.

 A novel keyless cryptosystem based on Latin square and cognitive artificial intelligence for blockchain 223

Figure 2 Illustrates the architecture and the utilisation of the CipherInCipher System with detailing of phase 1 (see online version
for colours)

Notes: It shows the architecture and the interaction of various modules with each other in phase 1 to build a CipherInCipher-based

system. Then, it shows the utilisation of the CipherInCipher system by the communication parties.

Figure 3 Illustrates the architectural part of the CipherInCipher system in phase 3 that utilises LS

224 A. Desoky et al.

2.2 Phase 1: generating false Ciphertext
The CipherInCipher-based system generates false ciphertext
by creating either a legitimate ciphertext of an unwanted
message (plaintext) or a fake ciphertext, as shown in
Figures 1 and 2. The algorithm of phase 1, as shown in
Figures 1 and 2, and Algorithm 1 along with Table 1,
consists of several procedures (steps) that may reach up to
ten procedures. Each procedure of Phase 1 will be executed
in its independent step, as shown in both Table 1 and
Algorithm 1 (the pseudocode).

Table 1 Shows the list of all steps of phase 1

Step # in
phase 1 What will do in each step (task detailed)

Step 1 Provides Random resources of unwanted
plaintexts. This is the initial input.

Step 2 Enables a selector that randomly selects unwanted
plaintexts and forms a message(s) from step 1.

Step 3 Decides whether to utilise a multiple or single
random unwanted plaintext(s). In this step, the
CipherInCipher system will generate either
multiple or single random unwanted plaintext(s)
based on user setup and/or the implementation
utilised and/or both together.

Step 4 Decides whether to utilise an unaltered or altered
unwanted plaintext.
If it is decided to utilise an unaltered of unwanted
plaintext, then go to step 7, otherwise, go to the
next step (step 5).

Step 5 If it is decided to utilise an altered of unwanted
plaintext, then randomly shred unwanted
plaintext(s).

Step 6 Randomly mix the shredded unwanted plaintext(s)
to form a message or group of messages.

Step 7 Encrypts the output of step 4 or 6 using the
selected contemporary cryptographic algorithm by
the user or by the CipherInCipher system’s setup,
which includes several cryptosystems to be used
for that.

Step 8 Decides whether to utilise an unaltered or altered
Ciphertext. If it is decided to utilise unaltered of
unwanted Ciphertext, then, go next (step 9),
otherwise go to phase 3.

Step 9 If it is decided to utilise an altered ciphertext, then,
the CipherInCipher system randomly shreds the
ciphertext. Then go to the next step (step 10)

Step 10 Randomly mix the shredded ciphertext to form a
fake ciphertext or group of fake ciphertexts that
look(s) like legitimate ciphertext(s).

Step 11 Phase 2
Step 12 Shredding the output of phase 2 based on phase 3.

In detail, step 12 shreds the output of phase 2 (step
11) based on phase 3, phase 3 setup, phase 3
implementation, and its LS.

Step 13 Phase 3

Phase 1 as stated before has up to ten steps. Steps 1 to 6 are
responsible for preparing false plaintext to be encrypted to
generate a false ciphertext, as follows. Step 1 is the initial

input to the CipherInCipher system which provides random
resources of false plaintexts (unwanted). Then, step 2
enables the selector to randomly select false plaintexts and
forms an unwanted false message from step 1. Step 3
decides whether to utilise a multiple or single random false
plaintext. In this step, the CipherInCipher system based on
user setup and/or the implementation utilised and/or both
together will generate either multiple or single random
unwanted plaintexts.

Algorithm 1 The CipherInCipher algorithm pseudocode

BEGIN
Step 1: Provides random resources of unwanted plaintexts;
 // This step is an input.
Step 2: Enables a selector that randomly selects unwanted
 Plaintexts and forms a message(s);
 // From Step 1.
Step 3: IF multiple random unwanted plaintext(s) == True
 /* In this step, the CipherInCipher system will

generate either multiple or single random
unwanted plaintext(s) based on user setup and/or
the implementation utilised and/or both together.
*/

 Then
 Generate the number needed of multiple random

unwanted plaintext(s);
 // From step 2;
 Else
 Generate single random unwanted plaintext;
 // From Step 2;
Step 4: IF Altered unwanted plaintext == True
 Then
 Begin
Step 5: Randomly shred unwanted plaintext(s);
 // This step will generate altered

unwanted plaintext by shredding the
output of step 3.

Step 6: Randomly mix the shredded unwanted
plaintext(s) to form a message or group of
messages;

 /* The input of step 6 comes from step
5. However, based on step 3, it will
generate a single message or multiple
messages. */

 End
Step 7: Encrypt the output from the previous step (step 4 or 6);
 /* The previous is a step 4 or 6. This is

done by using the selected contemporary
cryptographic algorithm by the user or by
the CipherInCipher system’s setup. */

Step 8: If Altered Ciphertext == True
 Then
 Begin
Step 9: Randomly shreds the Ciphertext;

 A novel keyless cryptosystem based on Latin square and cognitive artificial intelligence for blockchain 225

Step 10: Randomly mix the shredded ciphertext to
form a fake ciphertext or group of fake
ciphertexts;

/* This will be done to look like a legitimate ciphertext(s). */
 End
Step 11: Phase 2;
Step 12: Shredding the output of phase 2 based on phase 3;
/* Shredding the output of phase 2 (step 11) based on phase 3,
phase 3 setup, phase 3 implementation, and its Latin Square. */
Step 13: Phase 3;
END

Step 4 decides whether to utilise unaltered or altered false
plaintext. The utilisation of altered false plaintext
strengthens the final ciphertext that is generated by the
CipherInCipher system. This is because for an adversary to
decipher an encoded message and to claim successful
deciphering, it must reach meaningful plaintext. So, when
CipherInCipher randomly alters a false plaintext, it makes
an adversary never reach meaningful plaintext. However, if
CipherInCipher decides to utilise unaltered false plaintext,
then CipherInCipher will escape steps 5 and 6 and will jump
to step 7, otherwise, go to the next step (step 5). Reaching
step 5 means it is decided to alter the false plaintext.
Therefore, step 5 randomly shreds the false plaintext. Then,
step 6 randomly mixes the shredded false plaintext to form a
single false plaintext message or group of messages.

On the other hand, steps 7 to 10 are responsible for
generating false ciphertext which will sooner be utilised in
phase 3 for generating the final ciphertext that conceals the
actual real ciphertext. Step 7 encrypts the output of step 4 or
6 using the selected contemporary cryptographic algorithm
by the legitimate user or by the CipherInCipher system’s
setup, which includes several cryptosystems to be used for
that. Then, step 8 decides whether to utilise unaltered or
altered ciphertext. Therefore, in step 8 if it is decided to
utilise an unaltered unwanted false ciphertext, then, go to
next (step 9), otherwise, go to phase 3. Conversely, in step 8
if decided to exploit altered ciphertext, then, the
CipherInCipher system performs step 9 which randomly
shreds the ciphertext. Then, go to the next step (step 10).
Step 10 randomly mixes the shredded ciphertext to form a
single fake ciphertext or group of fake ciphertexts that look
like a legitimate ciphertext. At this moment, phase 1 has
ended, and the final output of phase 1 will be given to phase
3 as shown in Figures 1, 2, and Algorithm 1 along with
Table 1.

2.3 Phase 2: creating legitimate ciphertext
Creating legitimate ciphertext is the procedure of encrypting
an actual message. Given the availability of numerous
encoding and cryptographic techniques in the contemporary
literature that can suit CipherInCipher to be utilised
(Koblitz, 1994), the balance of this paper will focus on the
CipherInCipher system itself and will give examples of
contemporary cryptography algorithms that can be utilised
by CipherInCipher to demonstrate the applicability. Thus, in

this paper, CipherInCipher will deal with the use of a
contemporary cryptography algorithm, as if it is just a
cryptographic box that receives messages as inputs and
gives ciphertexts as outputs without too much detail about
this box or the contemporary cryptography algorithm
utilised. This is because it is not the actual contribution of
this paper.

The intended users along with the CipherInCipher
system requirement determine the appropriate contemporary
cryptography algorithm to utilise for achieving the
cryptographic goal. CipherInCipher can utilise symmetric,
asymmetric, or hybrid encryption, as per user choice. This
gives flexibility and freedom for selecting a contemporary
cryptography algorithm that suits the requirements of both
the CipherInCipher system and its users.

2.4 Phase 3: embedding real ciphertext in
cipher-cover

Phase 3 embeds a legitimate ciphertext that is generated
from phase 2 into a false ciphertext that is generated from
phase 1, as shown via pseudocode in Algorithm 2. In other
words, it embeds the encrypted message from phase 2 into
the generated false ciphertext from phase 1. Note that a LS
matrix with a size of N is an N × N matrix that has a core
property that each symbol S occurs only once in each row
and column (Laywine and Mullen, 1998; Dénes and
Keedwell, 1991; Keedwell and Dénes, 2015). The
embedding procedure is done according to a predetermined
algorithm based on a relatively large LS with a minimum
value of N = 11 to elevate its security. When LS uses a
minimum value of N = 11 or greater than 11, will be an
extremely large number of different unique LS as if it is a
virtually infinite number of different unique LS (Laywine
and Mullen, 1998; Dénes and Keedwell, 1991; Keedwell
and Dénes, 2015; Van Lint and Wilson, 1992; Shao, 1992).
Each one of the unique LSs will be utilised as a security key
for the embedding procedure in phase 3. In this embedding
procedure (phase 3), CipherInCipher will select only one
LS, from a virtually endless number of different LS, to
embed the legitimate ciphertext according to the selected
LS. It is worth noting that the security key (the selected LS)
is unknown even to legitimate users because the
CipherInCipher system securely computes the LS/security
key internally without sharing it with anyone. This makes
CipherInCipher a keyless cryptographic algorithm, despite
giving the users an option to be partially involved in the key
procedure generation or selection if users choose to operate
under such an option (setup). While the CipherInCipher
algorithm is publicly known to all adversaries, it assures the
security of its ciphertext from any illegitimate deciphering
and prevents any negative leakage. For example, the
CipherInCipher system ensures the secrecy of its security
key(s) and prevents an adversary from concluding the
LS/security key or any other information that may lead to
breaking the CipherInCipher system via resilient
mathematical computations, (e.g., LS, no-reuse keys,
rotating procedures used, etc.), as will be shown in this

226 A. Desoky et al.

section and the upcoming sections as well too. Note that the
CipherInCipher system does not allow reusing an
LS/security key once it is used. Furthermore, there are
several ways to select a secure LS that plays the role of a
security key in the CipherInCipher system, which will be
discussed in this section and the next sections.

In this paper, due to space constraints, this section will
discuss just a few concepts and examples in general of what
and how the CipherInCipher system and its implementation
may utilise, including the selection of secure LS, to achieve
the security and cryptographic goal, as follows. For
instance, how does CipherInCipher generate and utilise an
LS/security key securely and internally? CipherInCipher
system is a flexible system that may utilise the following
concepts, some of them, or more than them. This confirms
the fact that the CipherInCipher system may differ from one
implementation to another.

• Keyless: CipherInCipher is a public algorithm which
means, it is known to all adversaries. However, it
assures the security of its ciphertext from any
illegitimate deciphering and prevents any negative
leakage. CipherInCipher system is a keyless system.
Therefore, users neither hold keys nor use keys by
themselves. However, if users want to use their keys,
CipherInCipher can do that too, but it is not
recommended due to the concern of losing a key, key
leakage, stealing a key, key exchange, or similar issues.

• LS security key: CipherInCipher system internally and
securely generates keys to be utilised without sharing
them with anyone. So, users have no clue about any key
used. For instance, one type of key that is internally,
securely, and randomly generated and utilised is the LS
with a minimum of N = 11 to elevate its security. It
selects a specific LS to assign it to a group of users to
use only one time. So, there is no reuse of any internal
keys nor will be shared with users (e.g., LS, any other
keys, etc.). CipherInCipher system will mark it to keep
track of the used LS to avoid reusing keys. This
includes other virtual keys such as the order or
selection of mathematical operations utilised will be
changed or rotated, etc. For example, the key for
computing and generating the sequence of all LS is
unknown to all users and there will be no reuse of such
key as well. Mathematically and logically, the matrix of
LS will be discussed in more detail according to its
utilisation in the CipherInCipher system in the
validation section (Section 3) (Laywine and Mullen,
1998; Dénes and Keedwell, 1991; Keedwell and Dénes,
2015; Van Lint and Wilson, 1992; Shao, 1992).

• Other mathematical operations based on LS matrix:
concerning the mathematical operations, the
CipherInCipher algorithm and its implementation can
utilise a very sophisticated mathematical operation
consisting of a group/combination of multiple
mathematical operations that can be resiliently secure
even when it is publicly known to an adversary, which
is the case in CipherInCipher. Furthermore, a

group/combination can be built using simple and cheap
mathematical operations like addition, subtraction,
multiplication, swap, shifting, and other operations, etc.

However, the sequence order for a set of mathematical
operations is based also on the LS matrix, which makes
it in a dynamic order rather than just a static sequence.
For example, when CipherInCipher utilises an
LS-based matrix, CipherInCipher may select a row or
column to apply a specific sequence order for a set of
mathematical operations which will differ from one raw
to another and one column to another too, according to
properties of LS or/and partial LS utilised. Each cell of
a raw or column in the LS matrix conveys a specific
mathematical operation while that operation is unique
in the entire raw and column according to LS property.
Each time of communication will utilise a new row or
column. Note that the CipherInCipher system will keep
track of the sequence used for a particular group of
users and it will differ each time used and from one
group of users to another. The utilisation of the
LS-based matrix will ensure the achievement of the
security goal by changing the selected raw or column
used each time via predetermined protocol internally
randomly without sharing it with anyone. So, the
CipherInCipher system will know/compute such
sequence utilised but it will not be shared with anyone.

• Fake users: additionally, the CipherInCipher system
generates many fake users in such a way as to look
legitimate. This is in case of any internal attacks
involved; adversaries will not be able to analyse it to
conclude any useful information to break the
CipherInCipher system.

The CipherInCipher system does not share any information
with any user to ensure it is secure and unpredictable.
Nonetheless, Section 3 will be more discussion and
validation.

Algorithm 2 Pseudocode of the embedding procedure of phase
3 for the CipherInCipher algorithm

BEGIN
 If First_Time _Latin Square == True
 BEGIN
 Select Randomly Latin Square (LS) Where N =11;
 Keep Track of Selected LS;
 END
 Else
 BEGIN
 Select LS Based on the implemented equation

Where N = 11;
/* For simplicity. Based on the implemented e.g., Selected LS is
number 129 then it can be 129+1, 129+3, 129+5, and so on.
This is just an easy example to make it clear, but it can be very
complex. */
 Keep track of Selected LS;
 END

 A novel keyless cryptosystem based on Latin square and cognitive artificial intelligence for blockchain 227

 Keep track of the selected LS internally without sharing it
with any users;

 Make the False ciphertext ready;
 // from Phase 1, as shown in detail in previous sections.
 Make the Real Ciphertext Ready;
 // from Phase 2, as shown in detail in previous sections.
 For J = 1; J <= Max # of Columns; J++;
 For i=1; i<=Max # of Columns; i++;
 BEGIN
 Read one LS Value at a time;
 IF (LS Value <= EOF False Ciphertext) && (Real

Ciphertext NOT EOF);
 /* The false ciphertext is reasonable in size or to cover the

real ciphertext or multiple false ciphertext will be utilised */
 BEGIN
 Go to the location that is equal to the LS value on the

false ciphertext;
 Replace # of characters that matches the value of the

selected LS with characters from the real ciphertext of
phase 2;

 /* For example: if value = 3, go to position 3 then insert 3
characters from the output of Phase 2, as shown in detail in
previous sections. Remove number Replace */

 END
 END
END

2.5 CipherInCipher decryption process
The core idea of the presented paradigm shift in this paper,
namely CipherInCipher as the name suggests, is concealing
legitimate ciphertext in another fake/false ciphertext.
Therefore, the reverse process is very simple and trivial to
only legitimate users because the recipients will simply
apply the reverse steps. The main challenge is revealing the
legitimate ciphertext from the fake/false ciphertext. LS
conveys the sequence that needs to be followed for
collecting the legitimate ciphertext in the values of the
actual LS used. Once a legitimate ciphertext is revealed, it
will be directly decrypted by using the reverse of the actual
CipherInCipher system used. It is worth mentioning that
securely LS is utilised because it is relatively easy for
legitimate users to create and keep tracking the index of
which LS is used as invisible-key/keyless based on a
predetermined protocol among users. Unlike any other
mathematical model, it is extremely hard, if it is not
impossible, for an adversary to hack the LS key used among
virtual infinity (very large number) of LSs when N = >11
while securely enabling the concept of keyless, as explained
mathematically and logically in Section 3.

3 Implementation validation
This section aims to demonstrate the implementation
validation and feasibility of the CipherInCipher system and

its distinct robustness capability of achieving the security
and cryptographic goal, as follows.

3.1 Implementation
To avoid abstraction, this section demonstrates and
discusses a possible implementation example and illustrates
synthetic samples. The CipherInCipher system is flexible,
and it can differ from one implementation to another and
from one group of users to another. Thus, it can be built to
make it harder for adversaries to attack the CipherInCipher
system, as previously discussed. However, because of space
constraints and for the sake of making it easier to
understand and follow up with it, this section demonstrates
easy examples as follows.

• Sample of the output of phase 1: CipherInCipher
system generates false ciphertext by creating either a
legitimate ciphertext of unwanted plaintext or fake
ciphertext, to avoid repetition, as explained before and
shown in Figure 4, 1, 2, Algorithm 1, Tables 1 and 2,
along with online tools used in ENC1 (2022) and ENC2
(2022).

Figure 4 Illustrates the output of phase 1, which is the altered
false cyphertext

Note: This is produced after encrypting random

unwanted plaintext.

Figure 5 Illustrates the output of phase 2, which is the legitimate
cyphertext

Figure 6 Illustrates the output of phase 3, which is the final
cyphertext of the CipherInCipher system that conceals
the actual legitimate cyphertext

• Sample of the output of phase 2: CipherInCipher
encrypts the intended message via using a
contemporary cryptographic such as symmetric,
asymmetric, or hybrid encryption, as per user choice
and its setup. This is as shown in Figures 5, 1, and 2,
along with online tools used (ENC1, 2022; ENC2,
2022).

228 A. Desoky et al.

• Sample of the output of phase 3: CipherInCipher
embeds the encrypted message from Phase 2 into the
generated ciphertext from phase 1. Note that the
embedding procedure is done according to a
predetermined algorithm based on a relatively large LS
with a minimum value of N = 11 to make it more
secure, as shown in Figure 6 – 3, 1, 2, 4, and Table 2,
along with online tools used (ENC1, 2022; ENC2,
2022; ENC3, 2022; ENC4, 2022). Note that LS is
elaborated on in more detail in its immediate upcoming
section (Section 3.2).

Table 2 Shows the selected LS used

7 3 5 9 2 1 8 4 10 11 6
1 8 10 3 7 6 2 9 4 5 11
9 5 7 11 4 3 10 6 1 2 8
3 10 1 5 9 8 4 11 6 7 2
8 4 6 10 3 2 9 5 11 1 7
11 7 9 2 6 5 1 8 3 4 10
10 6 8 1 5 4 11 7 2 3 9
5 1 3 7 11 10 6 2 8 9 4
6 2 4 8 1 11 7 3 9 10 5
4 11 2 6 10 9 5 1 7 8 3
2 9 11 4 8 7 3 10 5 6 1

3.2 Mathematical analysis and proofs of utilising LS
This subsection aims to show the mathematical complexity
of how CipherInCipher takes advantage of the hard problem
of computing a relatively big LS (e.g., n => 11).

Definition: first of all, LS matrix with a size of N is an
N × N matrix that has a core property that each symbol S
occurs only once in each row and column (Laywine and
Mullen, 1998; Desoky, 2023). An n × n matrix is a LS only
if it consists of n sets, (e.g., symbols, numbers, letters, a
combination of all, etc.) arranged in such a way that no
orthogonal (row or column) contains the same value more
than one time (Van Lint and Wilson, 1992; Shao, 1992).
Note that there are special cases of LS such as Latin
Rectangle and partial LS that retain the same properties of
LS (Laywine and Mullen, 1998; Dénes and Keedwell, 1991;
Keedwell and Dénes, 2015; Van Lint and Wilson, 1992;
Shao, 1992).

How many LSs are there? Mathematically, there is no easy
computation method for the number Ln of n × n LSs with
symbols 1, 2, …, n, as up to date. The most known upper
and lower bounds assumed for large n are still vague.
However, van Lint and Wilson stated a classical result that
is never fully confirmed and is still fuzzy (Laywine and
Mullen, 1998; Dénes and Keedwell, 1991; Keedwell and
Dénes, 2015; Van Lint and Wilson, 1992; Shao, 1992). This
classic result is that:

2

2

1

(!)(!)
n n n

k n n
k

nk L
n=

≥ ≥∏ (1)

Shao and Wei reached a simple and explicit equation for
calculating the number of LSs (Van Lint and Wilson, 1992;
Shao, 1992). However, it is still a hard problem to compute
because of the exponential increase in the number of terms.
This equation for the number Ln of n × n LSs is (Van Lint
and Wilson, 1992; Shao, 1992):

0 ()! (1)
n

σ A
n

A B

per A
L n

n∈

 
= −  

 
 (2)

where Bn is the set of all n × n {0, 1} matrices, σ0(A) is the
number of zero entries in matrix A, and per(A) is the
permanent of matrix A (Laywine and Mullen, 1998; Dénes
and Keedwell, 1991; Disina et al., 2018; Keedwell and
Dénes, 2015; Van Lint and Wilson, 1992; Shao, 1992).

It is worth noting that the online encyclopaedia of
integer sequences (OEIS) was developed and maintained by
Neil Sloane during his research at AT&T Labs. Then, it was
transferred the intellectual property and hosting of the OEIS
to the OEIS Foundation in 2009 (ENC3, 2022; ENC4,
2022). Table 3 shows all known exact values of all LSs of
size n, as referenced via OEIS. It is observed that the
numbers increase exceptionally rapidly. For instance, the
number of all LSs registered a dramatic big jump between n
and n + 1, especially starting when n is equal to 3, 4, 5, 6,
and so on, as shown in Table 3. It is also observed that the
number of all LSs holds a relatively very large number from
n = 6 and so on. Once n reaches a value of 11, the number
of all LSs becomes a virtual infinity number, as shown in
Table 3. For each n, the number of LSs altogether (sequence
A002860 in the OEIS), as shown in Table 3 (Laywine and
Mullen, 1998; Dénes and Keedwell, 1991; Keedwell and
Dénes, 2015; Van Lint and Wilson, 1992; Shao, 1992;
ENC3, 2022; ENC4, 2022).

The usage of cell sequence in LS can be via a
column-based, row-based, combination of both rows and
columns together, and/or random-based, as predetermined.
This will add more strength to the use of LS. Yet, if the
usage level is just rows and columns, then, each LS will be
used twice. Thus, the above large number will be multiplied
by 2 which will create an extremely larger number than its
original one. In addition, CipherInCipher can construct LS
from any random size with a minimum n = 11 along with a
random set of values that satisfy the properties of LS.
Moreover, special cases of LS such as Latin Rectangle and
partial LS can also be utilised by the CipherInCipher system
which also will add more strength to it. Therefore, the
prediction, calculation, brute force, and similar ways to
attack are invisible to be used against CipherInCipher
because the virtual infinity number of LS makes it
extremely difficult for an adversary to deal with. For
example, the task of searching or predicting a key among a
virtually endless number of keys (e.g., LS used).

This makes LS with a relatively big n as at least n = 11
to be very promising in the field of cryptography in general
and particularly in the presented cryptosystem in this paper,
as shown in Table 3.

 A novel keyless cryptosystem based on Latin square and cognitive artificial intelligence for blockchain 229

Table 3 Shows all LS of size N (sequences a002860 in the OEIS) increases by increasing the value of N

n
All Latin squares of size n

(Sequence A002860 in the OEIS)

1 1
2 2
3 12
4 576
5 161, 280
6 812, 851, 200
7 61, 479, 419, 904, 000
8 108, 776, 032, 459, 082, 956, 800
9 5, 524, 751, 496, 156, 892, 842, 531, 225, 600
10 9, 982, 437, 658, 213, 039, 871, 725, 064, 756, 920, 320, 000
11 776, 966, 836, 171, 770, 144, 107, 444, 346, 734, 230, 682, 311, 065, 600, 000

3.3 Keyless
In this paper, the meaning of a keyless cryptosystem is that
a user knows neither the actual key used nor its related
information and there is no option given to users to hold or
use a key. In this case, a user does not use a key by
himself/herself to encrypt and/or decrypt. Therefore, it is
called a keyless cryptosystem. Obviously, in every
cryptosystem, either a key or something in it acts as a key
regardless of whether it is key-based or keyless-based.
Thus, in the CipherInCipher system, there is a use of keys
but only internally covertly without sharing an actual key
with any user or its related info.

In symmetric encryption, users share the use of a single
key among communicating parties to encrypt and decrypt
(Koblitz, 1994). On the other hand, in asymmetric
encryption, each user has his unique pair of keys, a public
key, and a private key to encrypt and decrypt messages
(Koblitz, 1994). Conversely, the CipherInCipher system is a
public keyless system, where users neither hold nor use
keys by themselves. Therefore, CipherInCipher neither
shares any key nor any related information to any key with
any user. CipherInCipher can utilise centralised,
decentralised, or hybrid centralised keyless management
among communicating parties.

3.3.1 Centralised, decentralised, and hybrid
CipherInCipher system can utilise a centralised,
decentralised, blockchain, or hybrid (combination of
centralised and decentralised) keyless management system
by taking advantage of LS proprieties, e.g., a large number
of LS for n = 11, etc. to securely handle an LS-based
keyless system, as discussed before (e.g., Subsection 2.4 in
Section 2, Subsections 3.1 and 3.2 in Section 3), and as
follows (Laywine and Mullen, 1998; Dénes and Keedwell,
1991; Keedwell and Dénes, 2015; Van Lint and Wilson,
1992; Shao, 1992; ENC3, 2022; ENC4, 2022).

3.4 Centralised system
A CipherInCipher centralised system and its all
functionalities can be fully controlled by an individual, a
group of people, or an entity like online social applications
such as Facebook and Twitter (Liu et al., 2022).

CipherInCipher centralises the key management system
(KMS) by conveying all its components and concepts such
as hardware, software, lifecycle management, auditing,
security, etc. into a central authority that consistently
handles all issues of the keys (Stennikov et al., 2022). In
this case, the KMS of CipherInCipher will be called a
CKMS because it is centralised.

CipherInCipher utilises LS-based centric key generation
management internally in a centralised system without
sharing a key used or its information with any user, as
explained before. It generates a new LS-based key for each
time new communication because CipherInCipher does not
allow the reuse of keys. Thus, it assigns the newly generated
key to a specific group of users to use it only one time. The
use of keys covertly and only internally without sharing
them or their related information with users makes the
CipherInCipher system a secure keyless system. This avoids
problematic issues such as phishing attacks, losing keys,
stealing keys, etc. In this case, the CipherInCipher
centralised system gains higher performance, faster, and
more dedication from the concepts of centralisation systems
like the private blockchain.

3.5 Decentralised and blockchain system
A CipherInCipher decentralised system is an interconnected
system in the form of networked computers rather than just
a central authority (Kandi et al., 2022). Examples of
decentralised architecture and systems are blockchain
technologies such as Bitcoin and Ethereum (Stennikov
et al., 2022; Kandi et al., 2022).

CipherInCipher decentralises the key management
system (DKMS) and utilises and manages LS-based key
generation to suit the decentralised system, where no central
authority. Instead, CipherInCipher decentralises the KMS

230 A. Desoky et al.

by leveraging the security, resiliency, availability, and
immutability properties of distributed ledgers to provide
vastly scalable DKMS (Kandi et al., 2022; ENC3, 2022;
ENC4, 2022). One of the advantages of CipherInCipher is a
decentralised LS-based key generation and management
divides the risks into numerous nodes rather than just a
single node. Thus, the CipherInCipher decentralised system
is not vulnerable to a single node failure or attack. In this
case, the CipherInCipher decentralised system gains the
proven high security of the decentralisation systems
concepts like a public blockchain.

3.6 Hybrid
In this paper, the CipherInCipher hybrid system is a
combination of centralised and decentralised systems
(WEB1, 2022a; Giron et al., 2023; Yu et al., 2015). It
attempts to take advantage of both centralised and
decentralised systems by combining similar structures of
both systems into one structure system, called a hybrid
system. It is similar to a centralised system from one
viewpoint and a decentralised system from another (Islam et
al., 2022; Wan et al., 2014). In some cases, the
CipherInCipher hybrid system may look more like a
decentralised system and vice versa depending on how
much the implementation is leaning toward. In other words,
more ingredients from either centralised or decentralised
systems have a designated effect in its final look.
Nonetheless, CipherInCipher attempts to employ the
advantages of both centralised and decentralised systems
and combine them into one system called hybrid (WEB1,
2022a; Islam et al., 2022).

Therefore, the CipherInCipher hybrid system gains the
proven high security of decentralised systems like a public
blockchain. Unlike the decentralised systems, it also gains
higher performance, faster, and more dedication from the
centralised system like the private blockchain. Technically,
this is done by utilising a centric KMS that handles the key
generation and managing it as a centralised system. Thus, it
gains the advantages of a centralised system while gaining
the advantages of a decentralised system.

3.7 Honeynet-based fake nodes and users

• Definition and concept: a honeynet is a decoy network
or a subnetwork that contains one or more honeypots to
trap, hunt, investigate, and learn about adversaries’
activities to secure the actual network (WEB1, 2022b;
Tan et al., 2021). It looks like a legitimate network or a
subnetwork and contains multiple systems or
subsystems but is hosted on one or only a few servers,
each representing one environment such as a
Windows-based honeypot, Mac-based honeypot
machine, or Linux-based honeypot (WEB1, 2022b).
Yet, it can also leak false information that fools
adversaries (WEB1, 2022b; Tan et al., 2021).

• CipherInCipher: it utilises the concept of the
honeynet-based system by employing fake nodes and

users forming its honeypot(s) to fool adversaries and to
keep all legitimate nodes and users safe and away from
attacks as much as possible. Therefore, CipherInCipher
creates a fake super node or number of fake super
nodes and each one operates as a legitimate super node
to fool an adversary. Additionally, it creates a fake
regular node or number of regular nodes and each one
operates as a legitimate regular node to fool an
adversary. Fake nodes are involved in a process
honeynet-based node. This will consume adversaries’
resources distract adversaries and keep them away from
the legitimate nodes. Fake nodes when acting as a
honeynet allow studying adversaries’ motives,
techniques, etc. and any vulnerabilities that may exist to
be fixed. Intentionally, it leaks false information in a
convincing way that fools adversaries to keep the actual
network safe.

3.8 Cognitive artificial intelligence and machine
learning based cryptanalysis

In cryptanalysis, a cryptanalyst attempts to attack a real
ciphertext to reveal a confidential message through the
analysis and detection of hidden patterns in the ciphertext or
predicting a secret key used. Our proposed cryptosystem is
keyless and the actual ciphertext is invisible, as explained in
detail before. As a result, this technique is secure by default.
Recently, attackers used the recent cognitive artificial
intelligence and machine learning (AI/ML) techniques to
automatically discover confidential information in the
ciphertext (Ahmadzadeh et al., 2022). To assure more
robustness, CipherInCipher exploits cognitive AI/ML
techniques to play the role of a cryptanalyst on the
generated ciphertext to ensure the robustness of the
generated cipher (Kim et al., 2023a).

There are potential roles that AI could play in the
context of keyless ciphertext:

1 Designing algorithms: AI methods, such as
evolutionary algorithms and neural networks, can be
utilised to investigate and enhance encryption
algorithms that do not rely on conventional keys.
Researchers can leverage AI’s pattern recognition
capabilities to develop new encryption systems that use
alternative techniques for secure communication.

2 Evaluating security: AI can be employed to assess the
security of keyless encryption systems. Machine
Learning models can analyse various keyless ciphertext
strategies, identify weaknesses, and offer suggestions to
improve security using AI-driven techniques.

3 Cryptanalysis: AI can assist in deciphering and
analysing keyless encryption protocols. By training
Machine Learning models on large datasets of
encrypted data, patterns can be uncovered, potential
flaws in encryption algorithms can be identified, and
methods to decipher ciphertext without traditional keys
may be discovered.

 A novel keyless cryptosystem based on Latin square and cognitive artificial intelligence for blockchain 231

CipherInCipher inspects its generated ciphertext in the three
phases to approve or disapprove the use of its outputs (e.g.,
false ciphertext, real ciphertext, and final ciphertext). In
case of CipherInCipher system disapproves its ciphertext of
any phases; CipherInCipher will redo the phase of the
disapproved ciphertext to regenerate another ciphertext that
will pass its inspection.

Many adversarial attacks could break the security of a
ciphertext including (Luo and Chen, 2020; Baksi and Baksi,
2022; Tolba et al., 2022). To be robust against possible
adversarial attacks, the CipherInCipher system attacks its
own generated cyphertext to ensure it is secure before
sending it to the legitimate recipient. As a result,
CipherInCipher takes precautionary steps to prevent
failures, and this is done intelligently and automatically
using advanced cognitive AI/ML techniques such as
residual connections and gated linear units. The problem is
formulated as a Ciphertext classification task that learns the
text using different machine learning, statistics,
computational linguistics, information retrieval, and deep
learning techniques. There are many applications of AI/ML
in cryptanalysis (Andonov et al., 2020; Lagerhjelm, 2018;
Kim et al., 2023b). Recently, different deep learning
architectures have been proposed to optimise this task (Shin
et al., 2020; Abd and Al-Janabi, 2019; Luthra and Pal,
2011). Different deep learning models have been used in
cryptanalysis such as convolutional neural network (CNN)
models have proved their capabilities in image analysis.
CNN has been used in ciphertext analysis (Luthra and Pal,
2011; Alom et al., 2019), long short-term memory (LSTM),
recurrent neural network (RNN), and gated recurrent unit
(GRU) (Kumari et al., 2021; Rundo, 2020). While
traditional cryptanalysis focuses on extracting the key to
achieve success in deciphering ciphertexts, neural
cryptanalysis aims to predict ciphertexts without prior
knowledge of the key. In traditional cryptanalysis, a delicate
human mathematical analysis is conducted to determine
how the key value affects the statistics of
plaintext-ciphertext pairs. The training data for neural
cryptanalysis consists of pairs of plaintext and ciphertext,
and the objective is to predict ciphertexts based on inputted
plaintexts. This task is symmetric to predicting plaintexts
from ciphertexts, as encryption and decryption are
reversible processes. There have been only a few attempts
to apply neural networks in the field of cryptography. In
1998, Clark (1998) introduced a neural network-based
cryptography system, and in 2005, Kanter (2002) presented
a method of using neural networks for secret key exchange
via a public channel. Another proposal by Rao (2009)
involved the use of a right-sigmoidal function as an
activation function in a neural network for cryptanalysis of
Feistel-type ciphers, but it did not yield any significant
results. Measuring the strength of a cipher was explored by
Xiao (2019), where the difficulty of replicating the cipher
algorithm using a neural network was used as a metric.
Additional metrics like cipher match rate, training data
complexity, and training time complexity were introduced
to numerically express cipher strength, enabling direct

comparisons between different ciphers. The experimental
approach involved fully connected neural networks with
multiple parallel binary classifiers at the output layer.

However, the ciphertext sequence is decorrelated from
the plaintext sequence. As a result, discriminative features
between different categories are difficult to detect and
require a deep understanding of the context (Rundo, 2020;
Livieris et al., 2021). Other advanced deep learning
techniques like bidirectional LSTM and transformers with
attention mechanisms have a higher capacity to detect long
dependencies to better understand the context (Livieris
et al., 2021; Johnson and Zhang, 2016). We explore
state-of-the-art machine learning and deep learning for
detecting and highlighting the weakness of the generated
cipher (Ahmadzadeh et al., 2022).

In addition, advanced ML and DL architectures such as
ensemble DL models are proposed to enhance the
state-of-the-art performance in measuring the quality of the
cipher text and detecting the possible vulnerabilities.
Different from plaintext learning, ML/DL must meet
different criteria for efficient ciphertext interference.
Language models like CNNs, long-short-term memory, and
transformers are used to design high-performing and
efficient models for ciphertext robustness evaluation. These
models are extended using semantic and ontology
knowledge to improve the interference power. Different
hybridisation, optimisation (e.g., hyperparameters,
architectures, and feature selection), and interpretability
techniques are explored to improve the performance and
explainability of the resulting model.

Note that ML/DL algorithms can be used in other steps
in the proposed model to enhance its robustness and
automation. For example, they can be used to determine the
sensitive information in the plaintext input to phase 2. In
addition, it can be used at the destination to detect possible
attacks on the received messages. They can be used to
generate random text that can be used as input to phase 1.
ML/DL models can be optimised to generate ciphertext in
the three steps. There is great potential for the application of
AI/ML in the proposed architecture to prove its
performance, robustness, and automation.

4 Security validation
This section aims to demonstrate the security validation,
cryptoanalysis, and several cryptographic and cybersecurity
attacks against the CipherInCipher system. The purpose is
to show the distinct robustness capability of the
CipherInCipher system in achieving the security and
cryptographic goal, as follows.

4.1 Statistical signature
In this paper, a statistical signature and analysis refer to the
pattern, fingerprint, profile, characters’ frequency, etc. of
ciphertext (Kim et al., 2023a; Siegenthaler, 1985; Li and
Zhang, 2022). Numerically, a statistical signature is the
number of times characters appear on average in a particular

232 A. Desoky et al.

type of ciphertext (Kim et al., 2023a). Unlike the letters’
frequency of a particular normal language, characters’
frequency may contain more than just alphabetic letters and
numerical values, like special symbols, etc. The frequency
of characters and their plotted graph may vary from one
type of ciphertext to another.

In CipherInCipher, the generated ciphertext is protected
from such an attack because the actual ciphertext is
embedded into a relatively large fake ciphertext. An actual
ciphertext is a subset of the fake ciphertext. The size of an
actual ciphertext is minimal compared to the size of its false
ciphertext. Therefore, a statistical signature will mainly
represent a false ciphertext used rather than its embedded
actual ciphertext. Furthermore, the procedures in phases 1
and 2 of the CipherInCipher system kill any statistical
signatures of any type of ciphertext used due to the use of
several cryptosystems and the alteration procedures. Thus, it
is infeasible for an adversary to accomplish a successful
attack via statistical signatures against the CipherInCipher
system.

4.2 Known-plaintext analysis (KPA)
In a KPA attack, an adversary attempts to obtain some
known plaintext-ciphertext pairs to hack them to conclude a
cryptographic key used (Li and Zhang, 2022; Nakano and
Suzuki, 2022; Nakano et al., 2014). An adversary prevails if
a KPA attack results in concluding the cryptographic key
used. The strength of this attack may vary from one
cryptographic approach to another and from an amount of
available information to another. The availability of an
adequate amount of information plays a major role in easing
the KPA attack (Nakano et al., 2014).

Unlike all cryptosystems, in the CipherInCipher an
actual ciphertext is not available to an adversary because
CipherInCipher conceals an actual ciphertext in one or
several false ciphertexts. Only, the false ciphertext may be
available to an adversary. Additionally, the CipherInCipher
system generates a new key for each time of communication
and does not reuse the key more than once. Therefore, even
if an adversary concludes a key used, is infeasible, still
cannot be counted as a big victory. The reason is that a
hacked-key cannot be reused to decrypt any future
ciphertext due to the expiration of a key once it is used. This
is because the applied policy of CipherInCipher is that a
newly generated key only for new communication is to be
used only one time and expires once used.

4.3 Chosen-plaintext analysis (CPA)
A CPA attack is based on the assumption that an adversary
is capable of making a successful attempt to correspond
ciphertexts to the selected arbitrary plaintexts or vice versa,
and then, an adversary makes all practical and scientific
efforts attempting to find the cryptographic key used
(Anderson, 2020; Barrera et al., 2010; Rao and Cui, 2022).
The practicality of the CPA attack is questionable and the
probability of prevailing in exploiting a CPA attack is quite
low according to its low rate of success (Anderson, 2020;

Barrera et al., 2010; Rao and Cui, 2022). One of the goals of
this attack is to gain more information about a particular
cryptosystem to at least reduce its strength to make it
vulnerable and insecure.

Unlike all obscurity-based technologies, CipherInCipher
is a public-based approach that does not depend on the
secrecy of any of its related components. CipherInCipher is
resiliently secure under the assumption that an adversary
has full information about CipherInCipher. Therefore, an
adversary that applies a CPA attack and collects information
about CipherInCipher as much as possible does not degrade
its security. A CPA attack requires that an adversary be
capable of corresponding ciphertexts to the selected
arbitrary plaintexts or vice versa. This is not feasible at all
when using CipherInCipher because the actual ciphertext is
not available to an adversary. The only ciphertext that may
be available to an adversary is the false ciphertext.

4.4 Ciphertext-only analysis (COA)
In cryptanalysis, a COA is based on the assumption that an
adversary has only ciphertext due to his passive capability
to eavesdrop and intercept communicating parties, etc.
(Biryukov and Kushilevitz, 1998; Liao et al., 2021). The
attacker only knows ciphertexts but not the corresponding
plaintexts. However, an adversary with the capability to
eavesdrop, intercept communication, etc. most likely has
some advanced expert knowledge and tools that are not
available to ordinary people. Some of the trivial information
such as the language of plaintext that is concealed in the
ciphertext and statistical signatures, etc. (Biryukov and
Kushilevitz, 1998; Liao et al., 2021; Al-Shareeda and
Manickam, 2022).

Unlike all cryptosystems, in the CipherInCipher an
actual ciphertext is concealed in one or numerous false
ciphertexts. In other words, the procedures of
eavesdropping, intercepting, etc. are not capable of
revealing the actual ciphertexts because as we explained
before the actual ciphertexts are invisible since they are
camouflaged in false ciphertexts. An adversary first has to
find and collect all tiny pieces and bits of actual ciphertexts
in a correct sequence and then, work on the actual ciphertext
to decipher it. This is infeasible in our case since this is an
extremely hard and very tedious operation if it is not
impossible. In general, a COA attack is extremely hard and
has a low rate of success. In addition, the applied policy of
CipherInCipher key-expiration, once a key is used, does not
allow an adversary to reuse a key if the key is successfully
hacked.

4.5 Man-in-the-middle (MITM)
In network security, a MITM, as the linguistic meaning of
its name, is an attack where an adversary is capable of
getting between communicating parties impersonating a
legitimate one and communicating via new messages or
altering victims’ communication (Fisher and Valenta, 2019;
Fassl, 2018). It means an adversary must be able to encrypt,
decrypt, and pass an authentication procedure as well

 A novel keyless cryptosystem based on Latin square and cognitive artificial intelligence for blockchain 233

(Biryukov and Kushilevitz, 1998; Fisher and Valenta, 2019;
Fassl, 2018).

In CipherInCipher, an MITM attack is inapplicable
because it is not feasible that an adversary will encrypt,
decrypt, and continue using a security key, as discussed
before. First, the actual ciphertext is invisible to an
adversary. Second, CipherInCipher is a keyless
cryptosystem where the users do not use keys. This makes
CipherInCipher immune from stealing key activities.

4.6 Adaptive chosen-plaintext analysis (ACPA)
An ACPA attack is like the CPA with the assumption that
an adversary has access to an actual cryptosystem (Hu et al.,
2014; Bard, 2006, 2007). This attack is very strong if all its
requirements are satisfied. However, if an ACPA attack
occurs successfully, it means, most likely there is an internal
leakage and/or compromise such as an internal attack.

CipherInCipher achieves a high level of security that
protects confidential information by concealing it in an
invisible strong ciphertext which makes it infeasible for an
adversary to even obtain an actual ciphertext. Yet, it utilises
the concept of honeynet-based technology by employing
fake nodes and users to form its honeypot(s) that fool
adversaries and keep all legitimate nodes and users’ safe
and away from harm’s way of cyberattacks as much as
possible. Therefore, even with an internal leakage or
compromise, our proposed system will still resist such
circumstances.

4.7 Internal attack
One of the most severe attacks is the internal attack because
an adversary, in this case, is a legitimate member of the
organisation (Kalinin and Skvortsov, 2021). Thus, an
internal attacker can have confidential information about the
organisation and access to its hardware, software, and
information, which can easily be used against the
organisation to harm it than an external attack (Kalinin and
Skvortsov, 2021).

Unlike all contemporary cryptography techniques
including obscurity, CipherInCipher is a public approach
that does not depend on the secrecy of any of its
components and makes its actual ciphertext indiscernible to
an adversary. This prevents an adversary from even
obtaining the actual ciphertext which is essential for any
attack to prevail.

Furthermore, CipherInCipher utilises the concept of
honeynet-based technology, as discussed in Subsection 3.7
of Section 3, by employing fake nodes and users to form its
honeypot(s) that fools adversaries and keep all legitimate
nodes and users safe and away from harm’s way of
cyberattacks as much as possible (WEB1, 2022b; Tan et al.,
2021). Therefore, even if an internal leakage or compromise
occurs, it will still resist under such circumstances. This
contributes to the security of CipherInCipher if an internal
attack occurs because it can fool an adversary. In case of big
security breaches such as severe leakage or even sending an
entire copy of the actual CipherInCipher system to an

adversary, it will still resist. This is because the actual
CipherInCipher system contains false information and fake
nodes and users that look legitimate to adversaries due to
the utilisation of honeynet-based technology to fool an
adversary as planned, as discussed before. Table 4
concludes a summary and comparison of all presented
mentioned attacks.

Table 4 Summary and comparison of all presented attacks

Cryptosystem type
→ Symmetric Asymmetric CipherInCipher

Attack ↓ /
Output →

Actual
ciphertext

Actual
ciphertext

Overall
false/fake
ciphertext

Statistical
signature

Feasible Feasible Infeasible

Known-plaintext
analysis (KPA)

Feasible Feasible Infeasible

Chosen-plaintext
analysis (CPA)

Feasible Feasible Infeasible

Ciphertext-only
analysis (COA)

Feasible Feasible Infeasible

Man-in-the-
middle (MITM)

Feasible Feasible Infeasible

Adaptive chosen-
plaintext analysis
(ACPA)

Feasible Feasible Infeasible

Internal attack Feasible Feasible Infeasible
Brute force attack Feasible Feasible Infeasible

4.8 CipherInCipher vs. steganography
Steganography is the science and art of camouflaging the
presence of covert communications (Desoky, 2012).
Fundamentally, the steganographic goal is not to hinder an
adversary from decoding a hidden message, but to prevent
an adversary from suspecting the existence of covert
communications (Desoky, 2012). When using any
steganographic technique if suspicion is raised, the goal of
steganography is defeated regardless of whether or not a
plaintext is revealed (Desoky, 2012).

Contemporary steganography approaches are often
classified based on the steganographic cover type into
image, audio, graph (Munir et al., 2022), or text. Textual
steganography can be linguistic and non-linguistic. When
linguistics is employed for hiding data and generating the
steganographic cover, an approach is usually categorised as
linguistic steganography to distinguish it from non-
linguistic techniques, e.g., image, audio, graph, and text
non-linguistic based. A text non-linguistic-based does not
follow any structure and grammar rules of human language
like URL-based Steganography. Therefore, the
steganographic cover must look innocent to an adversary.

Conversely, cryptography is the science and art of
encoding confidential data and information in an unreadable
format called ciphertext (Stallings, 2019; Koblitz, 1994). A
ciphertext should not be decryptable to its plaintext by an

234 A. Desoky et al.

unauthorised user. Unlike a steganographic cover, a
ciphertext advertises the fact that a valuable set of data or
information is concealed. Therefore, a secure ciphertext
depends on the strength of its cryptosystem that prevents an
adversary from decrypting its ciphertext.

Fundamentally, the steganographic goal is not to hinder
the adversary from decoding a hidden message, but to
prevent an adversary from suspecting the existence of
covert communications (Desoky, 2012). The set of
challenges in the steganography area is not in the
CipherInCipher approach where the goal is also different.
CipherInCipher like any other cryptographic approach
produces ciphertext that advertises the concealment of
secrets.

It is worth noting that an embedding procedure of a
message in a steganographic cover is a big challenge
because it must look innocent to an adversary to avoid
raising suspicion. However, in CipherInCipher the
embedding procedure of ciphertext in another ciphertext, as
explained before, is not a major concern like in
steganography. This is because steganography avoids any
illegible format that may raise suspicion, while any
cyphertext is already an illegible format by its nature.
Therefore, hiding ciphertext in another ciphertext is
relatively easier than hiding it in a steganographic cover
(Munir et al., 2022). Furthermore, the low bitrate in
steganography is a major concern because increasing
steganography bitrate most likely raises suspicion which
will defeat the purpose of a steganographic approach
(Desoky, 2012). Conversely, a bitrate in the CipherInCipher
can vary from one implementation to another. However, the
CipherInCipher bitrate most likely be higher than the
steganographic bitrate. This is due to the severe sensitivity
of steganographic cover for increasing a bitrate. On the
other hand, CipherInCipher is relatively insensitive to
increasing bitrate issues compared to steganography. It is
due to the nature of CipherInCipher which conceals
messages in an illegible format like ciphertext rather than a
legible format like normal text. Thus, CipherInCipher along
with all other validations and reasons that are stated before
in this paper is a very promising approach for securing
information and data whether in the static or the
transmission stage.

5 Conclusions
In this paper, we presented the architecture and validation of
a novel paradigm shift cryptosystem, namely
CipherInCipher, based on a relatively large LS for
blockchain and covert communications demonstrating the
robust capabilities of achieving the cryptographic and
security goal. Unlike all contemporary techniques including
obscurity, CipherInCipher is a public-based approach that
does not depend on the secrecy of any of its related
components. It attains a high level of security that protects
private information, data, or both not only by generating
strong ciphertext but also by preventing an adversary from
even obtaining the actual ciphertext by concealing it in a

false ciphertext. CipherInCipher gives legitimate users the
option to operate in triple modes symmetric, asymmetric,
and hybrid encryption for the actual ciphertext. In addition,
the CipherInCipher system is keyless for the main
ciphertext that conceals an actual ciphertext. We presented
the architecture, implementation, and validation of the
approach to illustrate this promising approach for securing
information and data whether in the static or the
transmission stage.

The future work of this research should focus on
applying the proposed approach to a large number of
different domains such as the medical and financial
application domains. These applications would use different
sets of data types such as graphs, images, and audio files
including big data sets and different application systems.

Acknowledgements
We would like to express our thanks to the well-known
cryptographer Dr. Taher Elgamal for the great generosity of
his support, effort, and time in discussing and advising in
building the CipherInCipher and CAIMLSSI system.

This work was supported and funded fully by
The Scired: Scientific Research and Development
(Scired Corporation at https://scired.com) under TR/Project
#0115202201 and TR/Project #0601201801.

Preliminary and shorter versions of this work appeared
in the 9th International Conference on Advanced Intelligent
Systems and Informatics (AISI2023), Springer, Desoky
et al. Yet, this work is a patent pending/filed US PPAN
63/514,796 (Desoky, 2023).

Research data policy and data availability
statements
All data, information, etc. are available in the public domain
for anyone to use as referenced.

References
Abd, A.J. and Al-Janabi, S. (2019) ‘Classification and

identification of classical cipher type using artificial neural
networks’, Journal of Engineering and Applied Sciences,
Vol. 14, No. 11, pp.3549–3556.

Ahmadzadeh, E., Kim, H., Jeong, O., Kim, N. and Moon, I. (2022)
‘A deep bidirectional LSTM-GRU network model for
automated ciphertext classification’, IEEE Access, Vol. 10,
pp.3228–3237, DOI: 10.1109/ACCESS.2022.3140342.

ALERT (2022) Alert (AA22-040A) 2021 Trends Show Increased
Globalized Threat of Ransomware, Original release date:
February 9, 2022, Last revised: February 10, 2022, [online]
https://www.cisa.gov/uscert/ncas/alerts/aa22-040a (accessed
23 October 2022).

Alom, M.Z., Taha, T.M., Yakopcic, C., Westberg, S., Sidike, P.,
Nasrin, M.S. and Asari, V.K. (2019) ‘A state-of-the-art
survey on deep learning theory and architectures’,
Electronics, Vol. 8, No. 3, p.292.

 A novel keyless cryptosystem based on Latin square and cognitive artificial intelligence for blockchain 235

Al-Shareeda, M.A. and Manickam, S. (2022) ‘Man-in-the-middle
attacks in mobile ad hoc networks (MANETs): analysis and
evaluation’, Symmetry, Vol. 14, No. 8, p.1543.

Anderson, R. (2020) Security Engineering: A Guide to Building
Dependable Distributed Systems, John Wiley & Sons,
Indianapolis, Indiana, USA.

Andonov, S., Dobreva, J., Lumburovska, L., Pavlov, S.,
Dimitrova, V. and Popovska Mitrovikj, A. (2020)
‘Application of machine learning in DES cryptanalysis’,
Proceedings of the 12th ICT Innovations Conference, Skopje,
North Macedonia, September.

Baksi, A. and Baksi, A. (2022) ‘Machine learning-assisted
differential distinguishers for lightweight ciphers’, Classical
and Physical Security of Symmetric Key Cryptographic
Algorithms, 2021 IFIP/IEEE 29th International Conference
on Very Large Scale Integration (VLSI-SoC), IEEE Xplore,
Singapore, November 2021, pp.141–162, DOI: 10.1109/
VLSI-SoC53125.2021.9606988.

Bard, G.V. (2006) A Challenging but Feasible Blockwise-Adaptive
Chosen-Plaintext Attack on SSL, Cryptology ePrint Archive.

Bard, G.V. (2007) ‘Blockwise-adaptive chosen-plaintext attack
and online modes of encryption’, in Cryptography and
Coding: 11th IMA International Conference, Springer Berlin
Heidelberg, Cirencester, UK, 18–20 December, Proceedings
11, pp.129–151.

Barrera, J.F., Vargas, C., Tebaldi, M. and Torroba, R. (2010)
‘Chosen-plaintext attack on a joint transform correlator
encrypting system’, Optics Communications, Vol. 283, No.
20, pp.3917–3921.

Biryukov, A. and Kushilevitz, E. (1998) ‘From differential
cryptanalysis to ciphertext-only attacks’, in Advances in
Cryptology – CRYPTO’98: 18th Annual International
Cryptology Conference, Springer Berlin Heidelberg, Santa
Barbara, California, USA 23–27 August, Proceedings 18,
pp.72–88.

Clark, M.B. (1998) ‘A neural-network based cryptographic
system’, in Proceedings of the 9th Midwest Artificial
Intelligence and Cognitive Science Conference (MAICS
1998), pp.91–94.

COMPW (2022) The Clock is Ticking for Encryption:
The Tidy World of Cryptography may be Upended
by the Arrival of Quantum Computers [online]
https://www.computerworld.com/article/2550008/the-clock-
is-ticking-for-encryption.html (accessed 3 August 2022).

Dénes, J. and Keedwell, A.D. (1991) Latin Squares: New
Developments in the Theory and Applications, Vol. 46,
Elsevier, The Netherlands.

Desoky et al. (2023) ‘Latin square and artificial intelligence
cryptography for blockchain and centralized systems’, 9th
International Conference on Advanced Intelligent Systems
and Informatics (AISI2023), Springer, (Preliminary and short
version).

Desoky, A. (2012) Noiseless Steganography: The Key to Covert
Communications, CRC Press, USA.

Desoky, A. (2023) Cipher in Cipher: A Novel Keyless
Cryptosystem Based on Latin Square and Artificial
Intelligence for Blockchain and Covert Communication, US
Patent Pending/Filed: US PPAN 63/514,796, July.

Desoky, A. and Ammar, H. (2022) Keyless Cryptosystem Based on
Latin Square for Blockchain and Covert Communications,
Scired Technical Report TR/Project # 0115202201, Scired:
Scientific Research and Development (Scired Corporation)
[online] https://scired.com (accessed 7 January 2023).

Desoky, A., Ammar, H., Fahmy, G., El-Sappagh, S., Basha, S.H.
and Hendawi, A. (2023) ‘Securing confidential information in
big data based on cognitive artificial intelligence and machine
learning’, in 2023 International Conference on Artificial
Intelligence Science and Applications in Industry and Society
(CAISAIS), IEEE, September, pp.1–6.

DHS1 (2022) The Department of Homeland Security: Cyber
Incident Reporting: A Unified Message for Reporting to the
Federal Government [online] https://www.dhs.gov/
sites/default/files/publications/Cyber%20Incident%20Reporti
ng%20United%20Message.pdf (accessed 23 October 2022).

DHS2 (2022) The Department of Homeland Security:
Cybersecurity & Infrastructure Security Agency, Worldwide
Cyber Incident Reporting [online] https://www.cisa.gov/
shields-up (accessed 23 October 2022).

DHS3 (2022) The Department of Homeland Security:
Cybersecurity & Infrastructure Security Agency,
Cybersecurity Attacks, Incident Reporting [online]
https://www.cisa.gov/stopransomware/general-information
(accessed 23 October 2022).

Disina, A.H., Jamel, S., Pindar, Z.A. and Deris, M.M. (2018)
‘Statistical analysis, ciphertext only attack, improvement of
generic quasigroup string transformation and dynamic string
transformation’, Advanced Science Letters, Vol. 24, No. 6,
pp.4459–4463.

ENC1 (2022) An Online Encryption [online] https://www.online-
toolz.com (accessed 31 August 2022).

ENC2 (2022) An Online Encryption [online] https://www.dcode.fr
(accessed 31 August 2022).

ENC3 (2022) An On-Line Encyclopedia of Integer Sequences
(OEIS) [online] https://oeis.org/wiki/Welcome (accessed
31 August 2022).

ENC4 (2022) An On-Line Encyclopedia of Integer Sequences
(OEIS) [online] https://oeis.org/A002860 (accessed 31 August
2022).

Fassl, M. (2018) Usable Authentication Ceremonies in Secure
Instant Messaging, Doctoral dissertation, Wien.

Fisher, G. and Valenta, L. (2019) Monsters in the Middleboxes:
Introducing Two New Tools for Detecting HTTPS
Interception, April, Springer, Cham, ISBN: 978-3030935733.

GAO (2022) Government Accountability Office (GAO), Report
Incidents [online] https://www.gao.gov/cybersecurity
(accessed 23 October 2022).

Giron, A.A., Custódio, R. and Rodríguez-Henríquez, F. (2023)
‘Post-quantum hybrid key exchange: a systematic mapping
study’, Journal of Cryptographic Engineering, Vol. 13, No. 1,
pp.71–88.

Habib, H.B., Hussein, W.A. and Abdul-Rahman, A.K. (2022) ‘A
hybrid cryptosystem based on Latin square and the modified
BB84 quantum key distribution’, Tikrit Journal of Pure
Science, Vol. 27, No. 4, pp.100–103.

Hu, W., Wu, L., Wang, A., Xie, X., Zhu, Z. and Luo, S. (2014)
‘Adaptive chosen-plaintext correlation power analysis’, in
2014 Tenth International Conference on Computational
Intelligence and Security, IEEE, November, pp.494–498.

Islam, N., Rahman, M.S., Mahmud, I., Sifat, M.N.A. and
Cho, Y.Z. (2022) ‘A blockchain-enabled distributed advanced
metering infrastructure secure communication (BC-AMI)’,
Applied Sciences, Vol. 12, No. 14, p.7274.

Jain, A., Kohli, V. and Mishra, G. (2020) Deep Learning Based
Differential Distinguisher for Lightweight Cipher Present,
Cryptology ePrint Archive, DOI: 10.1109/ACCESS.2019.
2939947.

236 A. Desoky et al.

Johnson, R. and Zhang, T. (2016) ‘Supervised and semi-supervised
text categorization using LSTM for region embeddings’, in
International Conference on Machine Learning, PMLR, June,
pp.526–534.

Kalinin, N. and Skvortsov, N. (2021) ‘Response to cybersecurity
threats of informational infrastructure based on conceptual
models’, in International Conference on Data Analytics and
Management in Data Intensive Domains, October, pp.19–35,
Springer International Publishing, Cham.

Kandi, M.A., Kouicem, D.E., Doudou, M., Lakhlef, H.,
Bouabdallah, A. and Challal, Y. (2022) ‘A decentralized
blockchain-based key management protocol for
heterogeneous and dynamic IoT devices’, Computer
Communications, Vol. 191, No. 6, pp.11–25.

Kanter, K.K. (2002) ‘Secure exchange of information by
synchronization of neural’, Europhysics Letters, Vol. 141,
No. 57, No. 57.

Keedwell, A.D. and Dénes, J. (2015) Latin Squares and their
Applications, Elsevier, The Netherlands.

Kim, H., Lim, S., Baksi, A., Kim, D., Yoon, S., Jang, K. and
Seo, H. (2023a) Quantum Artificial Intelligence on
Cryptanalysis, Cryptology ePrint Archive.

Kim, H., Lim, S., Kang, Y., Kim, W., Kim, D., Yoon, S. and
Seo, H. (2023b) ‘Deep-learning-based cryptanalysis of
lightweight block ciphers revisited’, Entropy, Vol. 25, No. 7,
p.986.

Koblitz, N. (1994) A Course in Number Theory and Cryptography,
Vol. 114, Springer Science & Business Media, USA.

Kumari, K., Singh, J.P., Dwivedi, Y.K. and Rana, N.P. (2021)
‘Multi-modal aggression identification using convolutional
neural network and binary particle swarm optimization’,
Future Generation Computer Systems, Vol. 118, No. 9,
pp.187–197.

Lagerhjelm, L. (2018) Extracting Information from Encrypted
Data using Deep Neural Networks, Master Thesis, January,
UMEA Univ., Dept. of Applied Physics and Electronics,
Sweden.

Laywine, C.F. and Mullen, G.L. (1998) Discrete Mathematics
using Latin Squares, Vol. 49, John Wiley & Sons, USA.

Li, Y. and Zhang, S. (2022) Statistical Analysis. In Applied
Research Methods in Urban and Regional Planning,
pp.109–148, Springer International Publishing, Cham.

Liao, M., Zheng, S., Pan, S., Lu, D., He, W., Situ, G. and Peng, X.
(2021) ‘Deep-learning-based ciphertext-only attack on optical
double random phase encryption’, Opto-Electronic Advances,
Vol. 4, No. 5, pp.200016–200011.

Liu, Y., Zhang, C., Yan, Y., Zhou, X., Tian, Z. and Zhang, J.
(2022) ‘A semi-centralized trust management model based on
blockchain for data exchange in IoT system’, IEEE
Transactions on Services Computing, Vol. 16, No. 2,
pp.858–871.

Livieris, I.E., Kiriakidou, N., Stavroyiannis, S. and Pintelas, P.
(2021) ‘An advanced CNN-LSTM model for cryptocurrency
forecasting’, Electronics, Vol. 10, No. 3, p.287.

Luo, X. and Chen, Z. (2020) ‘English text quality analysis based
on recurrent neural network and semantic segmentation’,
Future Generation Computer Systems, November, Vol. 112,
pp.507–511.

Luthra, J. and Pal, S.K. (2011) ‘A hybrid firefly algorithm using
genetic operators for the cryptanalysis of a monoalphabetic
substitution cipher’, in 2011 World Congress on Information
and Communication Technologies, IEEE, December,
pp.202–206.

Munir, N., Khan, M., Hussain, I. and Alanazi, A.S. (2022)
‘Cryptanalysis of encryption scheme based on compound
coupled logistic map and anti-codifying technique for secure
data transmission’, Optik, Vol. 267, No. 4, p.169628.

Nakano, K. and Suzuki, H. (2022) ‘Known-plaintext attack-based
analysis of double random phase encoding using multiple
known plaintext-ciphertext pairs’, Applied Optics, Vol. 61,
No. 30, pp.9010–9019.

Nakano, K., Takeda, M., Suzuki, H. and Yamaguchi, M. (2014)
‘Security analysis of phase-only DRPE based on
known-plaintext attack using multiple known plaintext –
ciphertext pairs’, Applied Optics, Vol. 53, No. 28,
pp.6435–6443.

NIST1 (2022) The National Institute of Standards and Technology
(NIST) [online] https://csrc.nist.gov/glossary/term/
cryptography (accessed 22 October 2022).

NIST2 (2022) NIST Special Publication 1800-21 [online]
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.1800-21.pdf (accessed 22 October 2022).

NIST3 (2022) William C. Barker ‘NIST Special Publication
800-59’ [online] https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-59.pdf (accessed 22 October 2022).

NIST4 (2022) The National Institute of Standards and Technology
(NIST) [online] https://csrc.nist.gov/glossary/term/
cryptanalysis (accessed 22 October 2022).

NIST5 (2022) The National Institute of Standards and Technology
(NIST), NIST Special Publication 800-57 Part 2
Revision 1 [online] https://nvlpubs.nist.gov/nistpubs/Special
Publications/NIST.SP.800-57pt2r1.pdf (accessed 22 October
2022).

Rao, J. and Cui, Z. (2022) ‘Chosen plaintext combined attack
against SM4 algorithm’, Applied Sciences, Vol. 12, No. 18,
p.9349.

Rao, K.K. (2009) ‘Cryptanalysis of a Feistel type block cipher by
feed’, International Journal of Soft, January, pp.131–135.

Rundo, F. (2020) ‘Deep LSTM with dynamic time warping
processing framework: a novel advanced algorithm with
biosensor system for an efficient car-driver recognition’,
Electronics, Vol. 9, No. 4, p.616.

Security (2022) Purple Sec: Cyber Security Statistics,
The Ultimate List Of Stats Data and Trends For 2022 [online]
https://stefanini.com/en/insights/articles/cyber-security-
statistics-for-2022-data-and-trends (accessed 23 October
2022).

Shao, J.Y. (1992) ‘A formula for the number of Latin squares’,
Discrete Mathematics, Vol. 110, Nos. 1–3, pp.293–296.

Shin, H.S., Kwon, H.Y. and Ryu, S.J. (2020) ‘A new text
classification model based on contrastive word embedding for
detecting cybersecurity intelligence in twitter’, Electronics,
Vol. 9, No. 9, p.1527.

Siegenthaler (1985) ‘Decrypting a class of stream ciphers using
ciphertext only’, IEEE Transactions on computers, Vol. 100,
No. 1, pp.81–85.

Stallings, W. (2019) Information Privacy Engineering and Privacy
by Design, Addison-Wesley Professional, USA.

Stennikov, V., Barakhtenko, E., Mayorov, G., Sokolov, D. and
Zhou, B. (2022) ‘Coordinated management of centralized and
distributed generation in an integrated energy system using a
multi-agent approach’, Applied Energy, March, Vol. 309,
p.118487.

 A novel keyless cryptosystem based on Latin square and cognitive artificial intelligence for blockchain 237

Tan, L., Yu, K., Ming, F., Cheng, X. and Srivastava, G. (2021)
‘Secure and resilient artificial intelligence of things: a
HoneyNet approach for threat detection and situational
awareness’, IEEE Consumer Electronics Magazine, Vol. 11,
No. 3, pp.69–78.

Tolba, Z., Derdour, M., Ferrag, M.A., Muyeen, S.M. and
Benbouzid, M. (2022) ‘Automated deep learning
BLACK-BOX attack for multimedia P-BOX security
assessment’, IEEE Access, September, Vol. 10,
pp.94019–94039.

Van Lint, J. and Wilson, R.M. (1992) A Course in Combinatorics,
Cambridge Univ. Press, New York.

Wade, M.I. and Gill, T. (2022) ‘The Iso-ElGamal cryptographic
scheme’, in 2022 IEEE International IOT, Electronics and
Mechatronics Conference (IEMTRONICS), IEEE, June,
pp.1–8.

Wan, Z., Wang, G., Yang, Y. and Shi, S. (2014) ‘SKM: Scalable
key management for advanced metering infrastructure in
smart grids’, IEEE Transactions on Industrial Electronics,
Vol. 61, No. 12, pp.7055–7066.

WEB1 (2022a) Alexandre Pelletier, Centralization vs.
Decentralization: Why You Need A Hybrid Model More Now
Than Ever [online] https://perkuto.com/blog/centralization-
vs-decentralization-why-you-need-a-hybrid-model-more-
now-than-ever/ (accessed 23 October 2022).

WEB1 (2022b) The Online Honeynet Project [online]
https://www.honeynet.org/ (accessed 31 August 2022).

Xiao, Y. (2019) ‘Neural cryptanalysis: metrics, methodology, and
applications in CPS ciphers’, 2019 IEEE Conference on
Dependable and Secure Computing (DSC).

