International Journal of Business Intelligence and Data Mining

Call for papers
Editor in Chief: Dr. Mahardhika Pratama
ISSN online: 1743-8195
ISSN print: 1743-8187
4 issues per year
Subscription price

 

IJBIDM provides a forum for state-of-the-art developments and research as well as current innovative activities in business intelligence, data analysis and mining. Intelligent data analysis provides powerful and effective tools for problem solving in a variety of business modelling tasks. IJBIDM highlights intelligent techniques used for business modelling, including all areas of data visualisation, data pre-processing (fusion, editing, transformation, filtering, sampling), data engineering, data mining techniques, tools and applications, neurocomputing, evolutionary computing, fuzzy techniques, expert systems, knowledge filtering, and post-processing.

 



 Topics covered include

  • Data extraction/reporting/cleaning/pre-processing
  • OLAP, decision analysis, causal modelling
  • Reasoning under uncertainty, noise in data
  • Business intelligence cycle
  • Model specification/selection/estimation
  • Web technology, mining, agents
  • Fuzzy, neural, evolutionary approaches
  • Genetic algorithms, machine learning, expert/hybrid systems
  • Bayesian inference, bootstrap, randomisation
  • Exploratory/automated data analysis
  • Knowledge-based analysis, statistical pattern recognition
  • Data mining algorithms/processes
  • Classification, projection, regression, optimisation clustering
  • Information extraction/retrieval, human-computer interaction
  • Multivariate data visualisation, tools

 

More topics...

Business Intelligence:

  • Data extraction and reporting
  • OLAP
  • Data cleaning and pre-processing
  • Decision analysis
  • Causal modelling
  • Reasoning under uncertainty
  • Uncertainty and noise in data
  • Business intelligence cycle, and model specification/selection/estimation
  • Web technology, mining and agents

Intelligent Techniques:

  • Fuzzy, neural, and evolutionary approaches
  • Genetic algorithms
  • Machine learning
  • Expert systems
  • Hybrid systems
  • Bayesian inference, bootstrap and randomisation

Data Analysis and Data Mining:

  • Exploratory and automated data analysis
  • Knowledge-based analysis
  • Statistical pattern recognition
  • Data mining algorithms and processes
  • Classification, projection, regression, optimisation clustering
  • Information extraction and retrieval
  • Multivariate data visualisation

Applications and Tools:

  • Visualisation tools
  • Applications (e.g. commerce, engineering, finance, manufacturing, science)
  • Human-computer interaction in intelligence data analysis
  • Business intelligence and data analysis systems and tools

 

Hide

More on this journal...
Objectives

Business intelligence and data mining share many common issues. IJBIDM aims to stimulate the exchange of ideas and interaction between these related fields of interest. It is intended to be the premier technical publication in the field, providing a resource collection relevant common methods and techniques and a forum for unifying the diverse constituent research communities in business intelligence and intelligent data analysis. Advances in data gathering, distribution and analysis have also created a need for an application of intelligent data analysis techniques to solve business modelling problems.

IJBIDM publishes original research results, surveys and tutorials of important areas and techniques, detailed descriptions of significant applications, technical advances and news items concerning use of intelligent data analysis technique in business applications. IJBIDM puts a heavy emphasis on new data analysis architectures, methodologies, and techniques and their applications in business.


Readership

IJBIDM provides a forum for the examination of issues related to the research and applications of intelligent data analysis in business. IJBIDM is targeted at academic, researchers, and IT professionals. This journal provides a vehicle to help business analysts and IT professionals to disseminate information and to learn from each otherís work. Readers will be well informed of the latest development in research and practice in intelligent data analysis and data mining and its applications in business problems. Readers will be able to learn established knowledge in data analysis techniques through comprehensive survey articles. Readers will have the opportunity to learn future direction in business intelligence and data mining
Contents

IJBIDM is devoted to the publications of high quality papers on theoretical developments and practical applications in business intelligence, data analysis and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. Special issues are devoted to current issues in business intelligence and techniques. IJBIDM also publishes best papers from international conferences in the areas relevant to the journal.

Papers published in IJBIDM are geared heavily towards applications (use of intelligence data analysis and mining techniques in business applications), with an anticipated split of 70% of the papers published being applications-oriented, research and the remaining 30% containing more theoretical research.


 

Hide

Browse issues

Vol. 11
Vol. 10
Vol. 9
Vol. 8
Vol. 7
Vol. 6

 

More volumes...

 

Get Permission
More on permissions

 IJBIDM is indexed in:

 

 IJBIDM is listed in:

 

Honorary Editor

  • Taniar, David, Monash University, Australia

Editor in Chief

  • Pratama, Mahardhika, Le Trobe University, Australia
    (ijbidm.eic@gmail.com)

    Associate Editors

    • Mungkasi, Sudi, Sanata Dharma University, Indonesia
    • Pan, Yongping, National University of Singapore, Singapore
    • Setiawan, Noor Akhmad, Universitas Gadjah Mada, Indonesia

    Advisory Board

    • Angelov, Plamen, Lancaster University, UK
    • Pal, Nikhil R., Indian Statistical Institute, India
    • Pedrycz, Witold, University of Alberta, Canada
    • Rutkowski, Leszek, Czestochowa University of Technology, Poland

    Editorial Board Members

    • Ashari, Mochamad, Telkom University, Indonesia
    • Dovzan, Dejan, University of Ljubljana, Slovenia
    • Elsayed, Saber Mohamed, University of New South Wales, Australia
    • Gomide, Fernando, University of Campinas, Brazil
    • Iglesias Martinez, Jose Antonio, Carlos III University of Madrid, Spain
    • Joo, Er Meng, Nanyang Technological University, Singapore
    • Koh, Yun Sing, University of Auckland, New Zealand
    • Kole, Alok, RCC Institute of Information Technology, India
    • Lian, Zhichao, Nanjing University of Science and Technology, China
    • Lim, Chee Peng, Deakin University, Australia
    • Lughofer, Edwin, Johannes Kepler University, Austria
    • Oentaryo, Richard Jayadi, Singapore Management University, Singapore
    • Perez, Javier Andreu, Imperial College London, UK
    • Raghavan, Vijay, University of Louisiana at Lafayette, USA
    • Sayed-Mouchaweh, Moamar, Universit de Reims Champagne-Ardenne, France
    • Wang, Ning, Dalian Maritime University, China

     

    A few essentials for publishing in this journal

     

    • Submitted articles should not have been previously published or be currently under consideration for publication elsewhere.
    • Conference papers may only be submitted if the paper has been completely re-written (more details available here) and the author has cleared any necessary permissions with the copyright owner if it has been previously copyrighted.
    • All our articles go through a double-blind review process.
    • All authors must declare they have read and agreed to the content of the submitted article. A full statement of our Ethical Guidelines for Authors (PDF)†is available.
    • There are no charges for publishing with Inderscience, unless you require your article to be Open Access (OA). You can find more information on OA here.

     

    Submission process

     

    All articles for this journal must be submitted using our online submissions system.

    Read our preparing and submitting articles page.