Int. J. of Big Data Intelligence   »   2017 Vol.4, No.3

 

 

Title: Hybrid approach-based support vector machine for electric load forecasting incorporating feature selection

 

Authors: Malek Sarhani; Abdellatif El Afia; Rdouan Faizi

 

Addresses:
Moroccan School of Computer Science (ENSIAS), Mohammed V University, Rabat, Morocco
Moroccan School of Computer Science (ENSIAS), Mohammed V University, Rabat, Morocco
Moroccan School of Computer Science (ENSIAS), Mohammed V University, Rabat, Morocco

 

Abstract: Forecasting future electricity demand is very important for the electric power industry. In fact, it has been shown in several research works that machine learning methods are useful for electric load forecasting (ELF) since electric load data are nonlinear in relation and complex. On the other hand, it is important to determine the irrelevant factors as a preprocessing step for ELF. Our objective in this paper is to investigate the importance of applying the feature selection approach to remove the irrelevant factors of electric load. To this end, we introduce a hybrid machine learning approach that combines support vector machine (SVM) and particle swarm optimisation (PSO) in both continuous and binary forms. Specifically, the binary hybridisation is used for feature selection and the continuous one is used for ELF. Experimental results demonstrate the feasibility of applying feature selection by SVM and PSO algorithms without decreasing the performance of the forecasting model for ELF.

 

Keywords: machine learning; electric load forecasting; ELF; feature selection; big data; support vector machine; SVM; particle swarm optimisation; PSO.

 

DOI: 10.1504/IJBDI.2017.10006110

 

Int. J. of Big Data Intelligence, 2017 Vol.4, No.3, pp.141 - 148

 

Available online: 28 Jul 2017

 

 

Editors Full text accessAccess for SubscribersPurchase this articleComment on this article