Int. J. of Industrial and Systems Engineering   »   2014 Vol.18, No.3

 

 

Title: Prediction of machine reconfigurability using artificial neural network for a reconfigurable serial product flow line

 

Authors: Faisal Hasan; P.K. Jain; Dinesh Kumar

 

Addresses:
Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee-247667, Uttrakhand, India
Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee-247667, Uttrakhand, India
Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee-247667, Uttrakhand, India

 

Abstract: Reconfigurable machines (RMs) are considered to be one of the vital elements of modern manufacturing systems like reconfigurable manufacturing systems (RMSs). These machines offered customised flexibility in terms of capacity and functionality. Reconfigurable machines are assembled using some basic/essential modules and auxiliary modules. The RMTs can be reconfigured into several other configurations for variable functionality and capacity by keeping its base modules and just adding/removing or adjusting the auxiliary modules. Measuring machine reconfigurability may be considered as one of the important challenge in assessing the performance of these manufacturing systems. In the present paper, an artificial neural network model has been proposed for quantitative assessment of reconfigurability values of RMs on the product flow line. The data is generated using a developed mathematical model based on multi attribute utility theory. The ANN predictive model could thus provide a flexible and objective framework for manufacturers to evaluate reconfigurability of machines for a given product flow line. The developed approach has been demonstrated using a multi stage serial reconfigurable product flow line.

 

Keywords: artificial neural networks; ANNs; machine reconfigurability; reconfigurable flow lines; serial product flow lines; reconfigurable machines; reconfigurable manufacturing systems; mathematical modelling; multiattribute utility theory; MAUT.

 

DOI: 10.1504/IJISE.2014.065535

 

Int. J. of Industrial and Systems Engineering, 2014 Vol.18, No.3, pp.283 - 305

 

Available online: 29 Oct 2014

 

 

Editors Full text accessAccess for SubscribersPurchase this articleComment on this article